Partial Differential Equation Toolbox™
User's Guide

MATLAB

R2019a >) MathWorks’

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Partial Differential Equation Toolbox™ User's Guide
© COPYRIGHT 1995-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

August 1995
February 1996
July 2002
September 2002
June 2004
October 2004
March 2005
August 2005
September 2005
March 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019

First printing
Second printing
Online only
Third printing
Online only
Online only
Online only
Fourth printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0

Revised for Version 1.0.1

Revised for Version 1.0.4 (Release 13)
Minor Revision for Version 1.0.4

Revised for Version 1.0.5 (Release 14)
Revised for Version 1.0.6 (Release 14SP1)
Revised for Version 1.0.6 (Release 14SP2)
Minor Revision for Version 1.0.6

Revised for Version 1.0.7 (Release 14SP3)
Revised for Version 1.0.8 (Release 2006a)
Revised for Version 1.0.10 (Release 2007a)
Revised for Version 1.0.11 (Release 2007b)
Revised for Version 1.0.12 (Release 2008a)
Revised for Version 1.0.13 (Release 2008b)
Revised for Version 1.0.14 (Release 2009a)
Revised for Version 1.0.15 (Release 2009b)
Revised for Version 1.0.16 (Release 2010a)
Revised for Version 1.0.17 (Release 2010b)
Revised for Version 1.0.18 (Release 2011a)
Revised for Version 1.0.19 (Release 2011b)
Revised for Version 1.0.20 (Release 2012a)
Revised for Version 1.1 (Release 2012b)
Revised for Version 1.2 (Release 2013a)
Revised for Version 1.3 (Release 2013b)
Revised for Version 1.4 (Release 2014a)
Revised for Version 1.5 (Release 2014b)
Revised for Version 2.0 (Release 2015a)
Revised for Version 2.1 (Release 2015b)
Revised for Version 2.2 (Release 2016a)
Revised for Version 2.3 (Release 2016b)
Revised for Version 2.4 (Release 2017a)
Revised for Version 2.5 (Release 2017Db)
Revised for Version 3.0 (Release 2018a)
Revised for Version 3.1 (Release 2018b)
Revised for Version 3.2 (Release 2019a)

Contents

Getting Started

1]

2|

Partial Differential Equation Toolbox Product Description ... 1-2
Key Features i, 1-2
Equations You Can Solve Using Legacy Functions 1-3
Equations You Can Solve Using PDE Toolbox 1-6
Common Toolbox Applications 1-9
Solve 2-D PDEs Using the PDE Modeler App 1-11
TIPS o e 1-12
Poisson’s Equation with Complex 2-D Geometry 1-14
Finite Flement Method Basics 1-18
Setting Up Your PDE

Solve Problems Using Legacy PDEModel Objects 2-3
Solve Problems Using PDEModel Objects 2-6
Three Ways to Create 2-D Geometry 2-8
How to Decide on a Geometry Creation Method 2-8

2-D Geometry Creation at Command Line 2-10
Three Elements of Geometry 2-10

vi

Contents

Create Basic Shapes
Create Names for the Basic Shapes . . .

SetFormula

Create Geometry and Remove Face Boundaries

Decomposed Geometry Data Structure

Parametrized Function for 2-D Geometry Creation

Required Syntax

Relation Between Parametrization and Region Labels

Geometry Function for a Circle

Arc Length Calculations for a Geometry Function
Geometry Function Example with Subdomains and a Hole . .
Nested Function for Geometry with Additional Parameters . .

Geometry from polyshape

STL FileImport

Geometry from Triangulated Mesh

3-D Geometry from a Finite Element Mesh

2-D Multidomain Geometry

Geometry from alphaShape

Cuboids, Cylinders, and Spheres

Single Sphere

Nested Cuboids of Same Height

Stacked Cylinders

Hollow Cylinder

Put Equations in Divergence Form

Coefficient Matching for Divergence Form
Boundary Conditions Can Affect the ¢ Coefficient

Some Equations Cannot Be Converted .

Specify Scalar PDE Coefficients in Character Form

Coefficients for Scalar PDEs in PDE Modeler App

Specify 2-D Scalar Coefficients in Function Form

Coefficients as the Result of a Program
Calculate Coefficients in Function Form

2-74
2-77
2-80

2-80
2-81

Specify 3-D PDE Coefficients in Function Form 2-83

Solve PDE with Coefficients in Functional Form 2-85
GEOME Y . oot e 2-85
PDE Coefficients 2-86
Boundary Conditions 2-87
Initial Conditions i 2-87
MeSh ... 2-88
Parabolic Solution Times 2-88
Solution 2-88
Alternative Coefficient Syntax 2-89

Coefficients for Systems of PDEs in the PDE Modeler App . . 2-91

f Coefficient for Systems 2-94
f Coefficient for specifyCoefficients 2-97
c Coefficient for specifyCoefficients 2-100
Overview of the ¢ Coefficient 2-100
Definition of the ¢ Tensor Elements 2-101
Some c VectorsCanBe Short 2-104
Functional Form 2-118
c Coefficient for Systems 2-122
c as Tensor, Matrix, and Vector 2-122
2-DSystems 2-127
3-DSystems 2-132
m, d, or a Coefficient for specifyCoefficients 2-142
Coefficientsm, d,ora0 .. 2-142
Shortm, d,oravectors 2-143
Nonconstantm, d,oraccv .. 2-144
a or d Coefficient for Systems 2-147
Coefficientsaord 2-147
Scalaraord 2-148
N-Element Column Vectoraord 2-148
N(N+1)/2-Element Column Vectoraord 2-148
N2-Element Column Vectoraord 2-149
View, Edit, and Delete PDE Coefficients 2-150
View Coefficients 2-150

viii

Contents

Delete Existing Coefficients
Change a Coefficient Assignment

Set Initial Conditions

What Are Initial Conditions?
Constant Initial Conditions
Nonconstant Initial Conditions
Nodal Initial Conditions

View, Edit, and Delete Initial Conditions

View Initial Conditions
Delete Existing Initial Conditions
Change an Initial Conditions Assignment

Solve PDEs with Initial Conditions

What Are Initial Conditions?
Constant Initial Conditions
Initial Conditions in Character Form
Initial Conditions at Mesh Nodes

No Boundary Conditions Between Subdomains
Identify Boundary Labels

Boundary Matrix for 2-D Geometry

Boundary Matrix Specification
One Column of a Boundary Matrix
Create Boundary Condition Matrices Programmatically . . .

Specify Boundary Conditions

Dirichlet Boundary Conditions
Neumann Boundary Conditions
Mixed Boundary Conditions
Nonconstant Boundary Conditions

Solve PDEs with Constant Boundary Conditions
Solve PDEs with Nonconstant Boundary Conditions

View, Edit, and Delete Boundary Conditions

View Boundary Conditions
Delete Existing Boundary Conditions
Change a Boundary Conditions Assignment

2-152
2-153

2-154
2-154
2-154
2-154
2-156

2-157
2-157
2-159
2-160

2-161
2-161
2-161
2-162
2-162

2-164

2-166

2-168
2-168
2-169
2-170

2-174
2-174
2-176
2-178
2-179

2-181
2-186
2-192
2-192

2-195
2-195

Boundary Conditions by Writing Functions 2-197

About Boundary Conditions by Writing Functions 2-197
Boundary Conditions for Scalar PDE 2-197
Boundary Conditions for PDE Systems 2-202
Generate Mesh i, 2-209
Find Mesh Elements and Nodes by Location 2-219
Assess Quality of Mesh Elements 2-226
Mesh Data as [p,e,t] Triples 2-230
MeshData 2-233

Solving PDEs

3|

von Mises Effective Stress and Displacements 3-3

Clamped, Square Isotropic Plate with Uniform Pressure Load

... 3-7
Deflection of Piezoelectric Actuator 3-12
Dynamics of Damped Cantilever Beam 3-25
Dynamic Analysis of Clamped Beam 3-38
Finite Element Analysis of Electrostatically Actuated MEMS

Device 3-48
Deflection Analysis of Bracket 3-65
Vibration of Square Plate 3-75
Structural Dynamics of Tuning Fork 3-80

ix

X

Contents

Modal Superposition Method for Structural Dynamics Problem

.. 3-91
Stress Concentration in Plate with Circular Hole 3-96
Thermal Deflection of Bimetallic Beam 3-106
Electrostatic Potential in Air-Filled Frame 3-114
Linear Elasticity Equations 3-117

Summary of the Equations of Linear Elasticity 3-117
3D Linear Elasticity Problem 3-118
Plane Stress 3-121
Plane Strain 3-122
Magnetic Field in Two-Pole Electric Motor 3-124
Scattering Problem 3-130
AC Power Electromagnetics Equations 3-136
Skin Effect in Copper Wire with Circular Cross Section . . . 3-138
Current Density Between Two Metallic Conductors 3-146
Heat Transfer Between Two Squares Made of Different
Materials: PDE Modeler App 3-149
Nonlinear Heat Transfer in ThinPlate 3-153
Poisson's Equation on Unit Disk: PDE Modeler App 3-163
Poisson's Equationon UnitDisk 3-169
Scattering Problem: PDE Modeler App 3-179
Minimal Surface Problem 3-184
Minimal Surface Problem: PDE Modeler App 3-189
Poisson's Equation with Point Source and Adaptive Mesh
Refinement 3-191

Heat Transfer in Block with Cavity: PDE Modeler App
Heat Transfer in Block with Cavity

Heat Transfer Problem with Temperature-Dependent
Properties

Heat Conduction in Multidomain Geometry with Nonuniform

HeatFlux
Inhomogeneous Heat Equation on Square Domain
Heat Distribution in Circular Cylindrical Rod

Heat Distribution in Circular Cylindrical Rod: PDE Modeler
AP . e

Wave Equation on Square Domain
Wave Equation on Square Domain: PDE Modeler App
Eigenvalues and Eigenmodes of L-Shaped Membrane

Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE
Modeler App e

L-Shaped Membrane with Rounded Corner
Eigenvalues and Eigenmodes of Square
Eigenvalues and Eigenmodes of Square: PDE Modeler App
Vibration of Circular Membrane
Solve PDEs Programmatically

When You Need Programmatic Solutions

Data Structures in Partial Differential Equation Toolbox . . .

Tips for Solving PDEs Programmatically

Plot 2-D Solutions and Their Gradients

3-197

3-202

3-206

3-216

3-224

3-229

3-239

3-243

3-248

3-251

xi

xii

Contents

Plot 3-D Solutions and Their Gradients
Types of 3-D Solution Plots
Surface Plot
2-D Slices Through 3-D Geometry
Contour Slices Through 3-D Solution
Plots of Gradients and Streamlines

Dimensions of Solutions, Gradients, and Fluxes

PDE Modeler App

4

Open the PDE Modeler App

2-D Geometry Creation in PDE Modeler App
Create BasicShapes
Select Several Shapes,
Rotate Shapes
Create Complex Geometries
Adjust Axes Limitsand Grid
Create Geometry with Rounded Corners

Coefficients That Depend on Time and Space in the PDE
Modeler App

Specify Boundary Conditions in the PDE Modeler App
Specify Mesh Parameters in the PDE Modeler App

Adjust Solve Parameters in the PDE Modeler App
Elliptic Equations
Parabolic Equations
Hyperbolic Equations
Eigenvalue Equations
Nonlinear Equations

Plot the Solution in the PDE Modeler App
Additional Plot Control Options
Tooltip Displays for Mesh and Plots

4-21

4-24

4-26
4-27
4-29
4-30
4-31
4-31

4-33
4-36
4-38

Functions — Alphabetical List

S|

xiii

Getting Started

» “Partial Differential Equation Toolbox Product Description” on page 1-2
» “Equations You Can Solve Using Legacy Functions” on page 1-3

* “Equations You Can Solve Using PDE Toolbox” on page 1-6

* “Common Toolbox Applications” on page 1-9

* “Solve 2-D PDEs Using the PDE Modeler App” on page 1-11

* “Poisson’s Equation with Complex 2-D Geometry” on page 1-14

* “Finite Element Method Basics” on page 1-18

1 Getting Started

Partial Differential Equation Toolbox Product Description

1-2

Solve partial differential equations using finite element analysis

Partial Differential Equation Toolbox provides functions for solving structural mechanics,
heat transfer, and general partial differential equations (PDEs) using finite element
analysis.

You can perform linear static analysis to compute deformation, stress, and strain. For
modeling structural dynamics and vibration, the toolbox provides a direct time integration
solver. You can analyze a component’s structural characteristics by performing modal
analysis to find natural frequencies and mode shapes. You can model conduction-
dominant heat transfer problems to calculate temperature distributions, heat fluxes, and
heat flow rates through surfaces. You can also solve standard problems such as diffusion,
electrostatics, and magnetostatics, as well as custom PDEs.

Partial Differential Equation Toolbox lets you import 2D and 3D geometries from STL or
mesh data. You can automatically generate meshes with triangular and tetrahedral
elements. You can solve PDEs by using the finite element method, and postprocess results
to explore and analyze them.

Key Features

* Structural analysis, including linear static, dynamic, and modal analysis
* Heat transfer analysis for conduction-dominant problems

* General linear and nonlinear PDEs for stationary, time-dependent, and eigenvalue
problems

* 2D and 3D geometry import from STL files and mesh data

* Automatic meshing using triangular and tetrahedral elements with linear or quadratic
basis functions

» User-defined functions for specifying PDE coefficients, boundary conditions, and initial
conditions

* Plotting and animating results, as well as derived and interpolated values

Equations You Can Solve Using Legacy Functions

Equations You Can Solve Using Legacy Functions

Note THIS PAGE DESCRIBES THE LEGACY WORKFLOW. New features might not be
compatible with the legacy workflow. For the corresponding step in the recommended
workflow, see “Equations You Can Solve Using PDE Toolbox” on page 1-6.

This toolbox applies to the following PDE type:
-V (cVu)+au=f

expressed in Q, which we shall refer to as the elliptic equation, regardless of whether its
coefficients and boundary conditions make the PDE problem elliptic in the mathematical
sense. Analogously, we shall use the terms parabolic equation and hyperbolic equation for
equations with spatial operators like the previous one, and first and second order time
derivatives, respectively. Q is a bounded domain in the plane or is a bounded 3-D region.
¢, a, f, and the unknown u are scalar, complex valued functions defined on Q. ¢ can be a
matrix function on Q (see “c Coefficient for Systems” on page 2-122). The software can
also handle the parabolic PDE

au

dE—V-(CVu)+au=f

the hyperbolic PDE
2

2u B
dF v (CVu)+au —f

and the eigenvalue problem
-V - (cVu) +au = Adu

where d is a complex valued function on Q, and A is an unknown eigenvalue. For the
parabolic and hyperbolic PDE the coefficients c, q, f, and d can depend on time, on the
solution u, and on its gradient Vu. A nonlinear solver (pdenonlin) is available for the
nonlinear elliptic PDE

=V (c(w)Vu) + a(u)u = f(u)

1-3

1 Getting Started

1-4

where c, g, and f are functions of the unknown solution u and of its gradient Vu. The
parabolic and hyperbolic equation solvers also solve nonlinear and time-dependent
problems.

Note Before solving a nonlinear elliptic PDE, from the Solve menu in the PDE Modeler
app, select Parameters. Then, select the Use nonlinear solver check box and click OK.

For eigenvalue problems, the coefficients cannot depend on the solution u or its gradient.

A system of PDEs with N components is N coupled PDEs with coupled boundary
conditions. Scalar PDEs are those with N = 1, meaning just one PDE. Systems of PDEs
generally means N > 1. The documentation sometimes refers to systems as
multidimensional PDEs or as PDEs with a vector solution u. In all cases, PDE systems
have a single geometry and mesh. It is only N, the number of equations, that can vary.

All solvers can handle the system case of N coupled equations. You can solve N = 1 or 2
equations using the PDE Modeler app, and any number of equations using command-line
functions. For example, N = 2 elliptic equations:

=V (c11Vu1) = V- (c12Vup) + anjug + ajpuz = fi

=V (1 Vug) = V- (c22Vup) + axpug + axup = f
For the elliptic problem, an adaptive mesh refinement algorithm is implemented. It can

also be used in conjunction with the nonlinear solver. In addition, a fast solver for
Poisson's equation on a rectangular grid is available.

The following boundary conditions are defined for scalar u:

* Dirichlet: hu = r on the boundary 9Q.

Generalized Neumann: ' - (cVu) + qu = g on Q.

n is the outward unit normal. g, q, h, and r are complex-valued functions defined on Q.
(The eigenvalue problem is a homogeneous problem, i.e., g = 0, r = 0.) In the nonlinear
case, the coefficients g, g, h, and r can depend on u, and for the hyperbolic and parabolic
PDE, the coefficients can depend on time. For the two-dimensional system case, Dirichlet
boundary condition is

hi1ug + hjgup =14
ha1uy + hpoup =17

Equations You Can Solve Using Legacy Functions

the generalized Neumann boundary condition is

T (e Vup) + 7 - (c12Vup) + quats + itz = gy
T - (1 Vuy) + 7 - (Vi) + @ittt + ool = g
and the mixed boundary condition is
hijug + hjpup = 1y
S (c11Vup) + 7 - (c12Vup) + quiu + gl = g1 + hiap
S (a1 Vur) + 1+ (c22Vup) + 1y + qoaliy = g + h

where u is computed such that the Dirichlet boundary condition is satisfied. Dirichlet
boundary conditions are also called essential boundary conditions, and Neumann
boundary conditions are also called natural boundary conditions.

For advanced, nonstandard applications you can transfer the description of domains,
boundary conditions etc. to your MATLAB® workspace. From there you use Partial
Differential Equation Toolbox functions for managing data on unstructured meshes. You
have full access to the mesh generators, FEM discretizations of the PDE and boundary
conditions, interpolation functions, etc. You can design your own solvers or use FEM to
solve subproblems of more complex algorithms. See also “Solve PDEs Programmatically”
on page 3-278.

1-5

1 Getting Started

Equations You Can Solve Using PDE Toolbox

1-6

Partial Differential Equation Toolbox solves scalar equations of the form

2
9“u | ou _
mW-l-dW_V (cVu)y+au=f

and eigenvalue equations of the form

-V - (cVu) +au = Adu
or

-V-(cVu)+au= A%mu

For scalar PDEs, there are two choices of boundary conditions for each edge or face:

Dirichlet — On the edge or face, the solution u satisfies the equation
hu = r,

where h and r can be functions of space (x, y, and, in 3-D case, z), the solution u, and
time. Often, you take h = 1, and set r to the appropriate value.

Generalized Neumann boundary conditions — On the edge or face the solution u
satisfies the equation

n - (cVu)+qu=g
1 is the outward unit normal. q and g are functions defined on 9Q, and can be

functions of x, y, and, in 3-D case, 2z, the solution u, and, for time-dependent equations,
time.

The toolbox also solves systems of equations of the form

2
“u , Jou a
m?+dﬁ—v (c®Vu)+au=f

and eigenvalue systems of the form

-V (c® Vu) +au = Adu
or

—V-(c®Vu)+au=A2mu

Equations You Can Solve Using PDE Toolbox

A system of PDEs with N components is N coupled PDEs with coupled boundary
conditions. Scalar PDEs are those with N = 1, meaning just one PDE. Systems of PDEs
generally means N > 1. The documentation sometimes refers to systems as
multidimensional PDEs or as PDEs with a vector solution u. In all cases, PDE systems
have a single geometry and mesh. It is only N, the number of equations, that can vary.

The coefficients m, d, c, a, and f can be functions of location (x, y, and, in 3-D, 2), and,
except for eigenvalue problems, they also can be functions of the solution u or its
gradient. For eigenvalue problems, the coefficients cannot depend on the solution u or its
gradient.

For scalar equations, all the coefficients except ¢ are scalar. The coefficient ¢ represents a
2-by-2 matrix in 2-D geometry, or a 3-by-3 matrix in 3-D geometry. For systems of N
equations, the coefficients m, d, and a are N-by-N matrices, f is an N-by-1 vector, and c is
a 2N-by-2N tensor (2-D geometry) or a 3N-by-3N tensor (3-D geometry). For the meaning
of ¢ ® u, see “c Coefficient for specifyCoefficients” on page 2-100.

When both m and d are 0, the PDE is stationary. When either m or d are nonzero, the
problem is time-dependent. When any coefficient depends on the solution u or its
gradient, the problem is called nonlinear.

For systems of PDEs, there are generalized versions of the Dirichlet and Neumann
boundary conditions:

* hu = rrepresents a matrix h multiplying the solution vector u, and equaling the
vectorr.

* n - (c® Vu)+ qu = g. For 2-D systems, the notation n - (c ® Vu) means the N-by-1
matrix with (i,1)-component

N
d d . d . d
j;l (cos(a)c,'l L1 + cos(a)c;, j, 1,2@ + sin(a)c;, j, 2,135 + sin(a)c;, 1,2,2@ uj
where the outward normal vector of the boundary n = (cos(a), sin(a)).

For 3-D systems, the notation n - (c ® Vu) means the N-by-1 vector with (i,1)-
component

1-7

1 Getting Started

N
.) L . 9
21 (sm((p)cos(G)c,-, j 1,13y t+ sin(@)cos()c; 125y * sin(¢g)cos(6)c;, j, 1,35)“]
N 0 9 | sin(0)si 9
(sm((p)Sln(Q)Ci, j2.1 X + sm((p)sm(Q)C,', J,2,2 W + Sln((P)Sln(e)Ci, J.2, 35)“]

ad ad 0
(cos(@)c,-, i3 135 + cos(0)c;, j, 3,25y + cos(0)c;, j, 3,357 |4
where the outward normal vector of the boundary
n = (sin(¢g)cos(0), sin(¢p)sin(0), cos(¢)).

For each edge or face segment, there are a total of N boundary conditions.

See Also

Related Examples

. “Solve Problems Using PDEModel Objects” on page 2-6

. “f Coefficient for specifyCoefficients” on page 2-97

. “c Coefficient for specifyCoefficients” on page 2-100

. “m, d, or a Coefficient for specifyCoefficients” on page 2-142

1-8

Common Toolbox Applications

Common Toolbox Applications

PDEs used for:

* Steady and unsteady heat transfer in solids

» Flows in porous media and diffusion problems

» Electrostatics of dielectric and conductive media

* Potential flow

» Steady state of wave equations

* Transient and harmonic wave propagation in acoustics and electromagnetics
* Transverse motions of membranes

Eigenvalue problems are used for:

* Determining natural vibration states in membranes and structural mechanics
problems

In addition to solving generic scalar PDEs and generic systems of PDEs with vector
valued u, Partial Differential Equation Toolbox provides tools for solving PDEs that occur
in these common applications in engineering and science:

» “Electrostatics and Magnetostatics”
* “Structural Mechanics”

* “AC Power Electromagnetics”

* “DC Conduction”

* “Heat Transfer”

The PDE Modeler app lets you specify PDE coefficients and boundary conditions in terms
of physical entities. For example, you can specify Young's modulus in structural
mechanics problems.

The application mode can be selected directly from the pop-up menu in the upper right
part of the PDE Modeler app or by selecting an application from the Application
submenu in the Options menu. Changing the application resets all PDE coefficients and
boundary conditions to the default values for that specific application mode.

When using an application mode, the generic PDE coefficients are replaced by
application-specific parameters such as Young's modulus for problems in structural

1-9

1 Getting Started

1-10

mechanics. The application-specific parameters are entered by selecting Parameters
from the PDE menu or by clicking the PDE button. You can also access the PDE
parameters by double-clicking a subdomain, if you are in the PDE mode. That way it is
possible to define PDE parameters for problems with regions of different material
properties. The Boundary condition dialog box is also altered so that the Description
column reflects the physical meaning of the different boundary condition coefficients.
Finally, the Plot Selection dialog box allows you to visualize the relevant physical
variables for the selected application.

Note In the User entry options in the Plot Selection dialog box, the solution and its
derivatives are always referred to as u, ux, and uy (v, vx, and vy for the system cases)
even if the application mode is nongeneric and the solution of the application-specific
PDE normally is named, e.g., Vor T.

The PDE Modeler app lets you solve problems with vector valued u of dimension two.
However, you can use functions to solve problems for any dimension of u.

Solve 2-D PDEs Using the PDE Modeler App

Solve 2-D PDEs Using the PDE Modeler App

To solve 2-D PDE problems using the PDE Modeler app follow these steps:

1

Start the PDE Modeler app by using the Apps tab or typing pdeModeler in the
MATLAB Command Window. For details, see “Open the PDE Modeler App” on page 4-
2.

Choose the application mode by selecting Application from the Options menu.

Create a 2-D geometry by drawing, rotating, and combining the basic shapes: circles,
ellipses, rectangles, and polygons. To draw and rotate shapes, use the Draw menu or
the corresponding toolbar buttons. To combine shapes, use the Set formula field.
See “2-D Geometry Creation in PDE Modeler App” on page 4-3.

Specify boundary conditions for each boundary segment. To do this, first switch to
the Boundary Mode by using the Boundary menu. Click the boundary to select it,
then specify the boundary condition for that boundary. You can have different types of
boundary conditions on different boundary segments. The default boundary condition
is the Dirichlet condition hu = rwith h = 1 and r = 0. You can remove unnecessary
subdomain borders by selecting Remove Subdomain Border or Remove All
Subdomain Borders from the Boundary menu. For details, see “Specify Boundary
Conditions in the PDE Modeler App” on page 4-21.

Specify PDE coefficients by selecting PDE Mode from the PDE menu. Then select a
region or multiple regions for which you are specifying the coefficients. Select PDE
Specification from the PDE menu or click the PDE button on the toolbar. Type the
coefficients in the resulting dialog box. For details, see “Coefficients for Scalar PDEs
in PDE Modeler App” on page 2-77 and “Coefficients for Systems of PDEs in the
PDE Modeler App” on page 2-91.

You can specify the coefficients at any time before solving the PDE because the
coefficients are independent of the geometry and the boundaries. If the PDE
coefficients are material-dependent, specify them by double-clicking each particular
region.

Generate a triangular mesh by selecting Initialize Mesh from the Mesh menu.
Using the same menu, you can also refine mesh, display node and triangle labels, and
control mesh parameters, letting you generate a mesh that is fine enough to
adequately resolve the important features in the geometry, but is coarse enough to
run in a reasonable amount of time and memory. See “Specify Mesh Parameters in
the PDE Modeler App” on page 4-24.

1-11

1 Getting Started

1-12

Solve the PDE by clicking the = button or by selecting Solve PDE from the Solve
menu. To use a solver with non-default parameters, select Parameters from the
Solve menu to. The resulting dialog box lets you:

* Invoke and control the nonlinear and adaptive solvers for elliptic problems.

» Specify the initial values, and the times for which to generate the output for
parabolic and hyperbolic problems.

* Specify the interval in which to search for eigenvalues for eigenvalue problems.

See “Adjust Solve Parameters in the PDE Modeler App” on page 4-26.

When you solve the PDE, the app automatically plots the solution using the default
settings. To customize the plot or plot other physical properties calculated using the
solution, select Parameters from the Plot menu. See “Plot the Solution in the PDE
Modeler App” on page 4-33.

Tips

After solving the problem, you can:

Export the solution or the mesh or both to the MATLAB workspace for further analysis.
Visualize other properties of the solution.
Change the PDE and recompute the solution.

Change the mesh and recompute the solution. If you select Initialize Mesh, the mesh
is initialized; if you select Refine Mesh, the current mesh is refined. From the Mesh
menu, you can also jiggle the mesh and undo previous mesh changes. You also can use
the adaptive mesh refiner and solver, adaptmesh. This option tries to find a mesh that
fits the solution.

Change the boundary conditions. To return to the mode where you can select
boundaries, use the oQ button or the Boundary Mode option from the Boundary
menu.

Change the geometry. You can switch to the draw mode again by selecting Draw
Mode from the Draw menu or by clicking one of the Draw Mode icons to add another
shape.

The following are the shortcuts that you can use to skip one or more steps. In general, the
PDE Modeler app adds the necessary steps automatically.

If you do not create a geometry, the PDE Modeler app uses an L-shaped geometry with
the default boundary conditions.

See Also

If you initialize the mesh while in the draw mode, the PDE Modeler app first
decomposes the geometry using the current set formula and assigns the default
boundary condition to the outer boundaries. After that, it generate the mesh.

If you refine the mesh before initializing it, the PDE Modeler app first initializes the
mesh.

If you solve the PDE without generating a mesh, the PDE Modeler app initializes a
mesh before solving the PDE.

If you select a plot type and choose to plot the solution, the PDE Modeler app checks if
the solution to the current PDE is available. If not, the PDE Modeler app first solves
the current PDE. The app displays the solution using the selected plot options.

If do not specify the coefficients and use the default Generic Scalar application mode,
the PDE Modeler app solves the default PDE, which is Poisson's equation:

-Au = 10.

This corresponds to the generic elliptic PDE with ¢ = 1, a = 0, and f = 10. The default
PDE settings depend on the application mode.

See Also

Related Examples

“Poisson’s Equation with Complex 2-D Geometry” on page 1-14
“Poisson's Equation on Unit Disk” on page 3-169

“Current Density Between Two Metallic Conductors” on page 3-146
“Minimal Surface Problem” on page 3-184

1-13

1 Getting Started

Poisson’s Equation with Complex 2-D Geometry

1-14

This example shows how to solve the Poisson's equation, -Au = f on a 2-D geometry
created as a combination of two rectangles and two circles.

To solve this problem in the PDE Modeler app, follow these steps:

1
2

10

11

Open the PDE Modeler app by using the pdeModeler command.

Display grid lines. To do this, select Options > Grid Spacing and clear the Auto
checkbox for the x-axis linear spacing. Enter X-axis linear spacing as
-1.5:0.25:1.5. Then select Options > Grid.

Align new shapes to the grid lines by selecting Options > Snap.
Draw two circles: one with the radius 0.4 and the center at (-0.5,0) and another with

the radius 0.2 and the center at (0.5,0.2). To draw a circle, first click the @
button. Then right-click the origin and drag to draw a circle. Right-clicking constrains
the shape you draw so that it is a circle rather than an ellipse.

Draw two rectangles: one with corners (-1,0.2), (1,0.2), (1,-0.2), and (-1,-0.2) and
another with corners (0.5,1), (1,1), (1,-0.6), and (0.5,-0.6). To draw a rectangle, first

click the L]
Model the geometry by entering (R1+C1+R2) -C2 in the Set formula field.
Save the model to a file by selecting FileSave As.

button. Then click any corner and drag to draw the rectangle.

Remove the subdomain borders. To do this, switch to the boundary mode by selecting
Boundary > Boundary Mode. Then select Boundary > Remove All Subdomain
Borders.

Specify the boundary conditions for all circle arcs. Using Shift+click, select these
borders. Then select Boundary > Specify Boundary Conditions and specify the
Neumann boundary condition with g = -5 and g = 0. This boundary condition means
that the solution has a slope of -5 in the normal direction for these boundary
segments.

For all other boundaries, keep the default Dirichlet boundary condition: h = 1, r =
0.

Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE
button on the toolbar. Specifyc = 1,a = 0,and f = 10.

Poisson’s Equation with Complex 2-D Geometry

12 [Initialize the mesh by selecting Mesh > Initialize Mesh. Refine the mesh by
selecting Mesh > Refine Mesh.

08 n

02 7

A I | | | I I | I I I |
-1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 15

13 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the
toolbar. The toolbox assembles the PDE problem, solves it, and plots the solution.

1-15

1 Getting Started

1-16

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8

-1

Color: u

-1.5 -1.25

-1 0.75 -0.5 -0.25 0 0.25 0.5 0.75

14 Plot the solution as a 3-D plot:

a
b
c

Select Plot > Parameters.
In the resulting dialog box, select Height (3-D plot).
Click Plot.

0.2

-0.2

-0.4

-0.8

-0.8

-1

-12

-1.4

Poisson’s Equation with Complex 2-D Geometry

Color: u Height: u

0.2

-0.2

-0.4

-0.8

-0.8

1-17

1 Getting Started

Finite Element Method Basics

The core Partial Differential Equation Toolbox algorithm uses the Finite Element Method
(FEM) for problems defined on bounded domains in 2-D or 3-D space. In most cases,
elementary functions cannot express the solutions of even simple PDEs on complicated
geometries. The finite element method describes a complicated geometry as a collection
of subdomains by generating a mesh on the geometry. For example, you can approximate
the computational domain Q with a union of triangles (2-D geometry) or tetrahedra (3-D
geometry). The subdomains form a mesh, and each vertex is called a node. The next step
is to approximate the original PDE problem on each subdomain by using simpler
equations.

For example, consider the basic elliptic equation.
-V - (cVu) + au = f on domain Q

Suppose that this equation is a subject to the Dirichlet boundary condition u = r on 9Qp
and Neumann boundary conditions on dQy. Here, dQ = aQp U aQy; is the boundary of Q.

The first step in FEM is to convert the original differential (strong) form of the PDE into
an integral (weak) form by multiplying with test function v and integrating over the
domain Q.

f(—V-(oVu)+au—f)de= 0 Vv
Q

The test functions are chosen from a collection of functions (functional space) that vanish
on the Dirichlet portion of the boundary, v = 0 on aQp. Above equation can be thought of

as weighted averaging of the residue using all possible weighting functions v. The
collection of functions that are admissible solutions, u, of the weak form of PDE are
chosen so that they satisfy the Dirichlet BC, u = r on aQp.

Integrating by parts (Green’s formula) the second-order term results in:

f(cVu Vv + auv)dQ — fﬁ - (cVu)vdaQyn + fﬁ “(cVu)vdaQp = ffde Vv
Q QN aQp Q

Use the Neumann boundary condition to substitute for second term on the left side of the
equation. Also, note that v = 0 on aQp nullifies the third term. The resulting equation is:

1-18

Finite Element Method Basics

J(CVU Vv + auv)dQ + fquvdaQN= fgvdaQN+éffde Vv
QN 0ON

Note that all manipulations up to this stage are performed on continuum Q, the global
domain of the problem. Therefore, the collection of admissible functions and trial
functions span infinite-dimensional functional spaces. Next step is to discretize the weak

form by subdividing Q into smaller subdomains or elements Q°, where Q = U Q°. This
step is equivalent to projection of the weak form of PDEs onto a finite-dimensional
subspace. Using the notations uy and v, to represent the finite-dimensional equivalent of

admissible and trial functions defined on Q°, you can write the discretized weak form of
the PDE as:

f (cTupTvy + aupvy) dQ° + f qupv d9Q% = f gv pdaQ% + f FupdQ® Vv
Q° 0%y 0% of

Next, let ¢;, withi =1, 2, ..., N}, be the piecewise polynomial basis functions for the

subspace containing the collections up and vy, then any particular u;, can be expressed as
a linear combination of basis functions:

Np
up = ;Uﬂbi

Here U, are yet undetermined scalar coefficients. Substituting u;, into to the discretized
weak form of PDE and using each vy = ¢; as test functions and performing integration

over element yields a system of N, equations in terms of N, unknowns Ui.

Note that finite element method approximates a solution by minimizing the associated
error function. The minimizing process automatically finds the linear combination of basis
functions which is closest to the solution u.

FEM yields a system KU = F where the matrix K and the right side F contain integrals in
terms of the test functions ¢;, ¢;, and the coefficients ¢, g, f, q, and g defining the problem.
The solution vector U contains the expansion coefficients of u;,, which are also the values
of u; at each node x; (k = 1,2 for a 2-D problem or k = 1,2,3 for a 3-D problem) since
up(x) = Ui

FEM techniques are also used to solve more general problems, such as:

1-19

1 Getting Started

1-20

Time-dependent problems. The solution u(x,t) of the equation

dau _

3 V-(cVu)+au=f

can be approximated by
N
up(x, t) = > Uit)pi(x)
i=1
The result is a system of ordinary differential equations (ODEs)

du _
M +KU = F

Two time derivatives result in a second-order ODE

2
MIY ku=F
dt

Eigenvalue problems. Solve
-V - (cVu) + au = Adu

for the unknowns u and A, where A is a complex number. Using the FEM discretization,
you solve the algebraic eigenvalue problem KU = AMU to find u;, as an approximation
to u. To solve eigenvalue problems, use solvepdeeig.

Nonlinear problems. If the coefficients ¢, a, f, q, or g are functions of u or Vu, the PDE
is called nonlinear and FEM yields a nonlinear system K(U)U = F(U).

To summarize, the FEM approach:

Represents the original domain of the problem as a collection of elements.

For each element, substitutes the original PDE problem by a set of simple equations
that locally approximate the original equations. Applies boundary conditions for
boundaries of each element. For stationary linear problems where the coefficients do
not depend on the solution or its gradient, the result is a linear system of equations.
For stationary problems where the coefficients depend on the solution or its gradient,
the result is a system of nonlinear equations. For time-dependent problems, the result
is a set of ODEs.

Assembles the resulting equations and boundary conditions into a global system of
equations that models the entire problem.

See Also

4 Solves the resulting system of algebraic equations or ODEs using linear solvers or
numerical integration, respectively. The toolbox internally calls appropriate MATLAB
solvers for this task.

References

[1] Cook, Robert D., David S. Malkus, and Michael E. Plesha. Concepts and Applications of
Finite Element Analysis. 3rd edition. New York, NY: John Wiley & Sons, 1989.

[2] Gilbert Strang and George Fix. An Analysis of the Finite Element Method. 2nd edition.
Wellesley, MA: Wellesley-Cambridge Press, 2008.

See Also

assembleFEMatrices | solvepde | solvepdeeig

1-21

Setting Up Your PDE

* “Solve Problems Using Legacy PDEModel Objects” on page 2-3

* “Solve Problems Using PDEModel Objects” on page 2-6

* “Three Ways to Create 2-D Geometry” on page 2-8

* “2-D Geometry Creation at Command Line” on page 2-10

* “Parametrized Function for 2-D Geometry Creation” on page 2-17
* “Geometry from polyshape” on page 2-41

* “STL File Import” on page 2-46

* “Geometry from Triangulated Mesh” on page 2-56

* “Geometry from alphaShape” on page 2-60

* “Cuboids, Cylinders, and Spheres” on page 2-62

* “Put Equations in Divergence Form” on page 2-71

* “Specify Scalar PDE Coefficients in Character Form” on page 2-74
* “Coefficients for Scalar PDEs in PDE Modeler App” on page 2-77
» “Specify 2-D Scalar Coefficients in Function Form” on page 2-80
* “Specify 3-D PDE Coefficients in Function Form” on page 2-83

* “Solve PDE with Coefficients in Functional Form” on page 2-85

* “Coefficients for Systems of PDEs in the PDE Modeler App” on page 2-91
+ “f Coefficient for Systems” on page 2-94

+ “f Coefficient for specifyCoefficients” on page 2-97

» “c Coefficient for specifyCoefficients” on page 2-100

* “c Coefficient for Systems” on page 2-122

* “m, d, or a Coefficient for specifyCoefficients” on page 2-142

* “aord Coefficient for Systems” on page 2-147

* “View, Edit, and Delete PDE Coefficients” on page 2-150

» “Set Initial Conditions” on page 2-154

* “View, Edit, and Delete Initial Conditions” on page 2-157

2 Setting Up Your PDE

2-2

“Solve PDEs with Initial Conditions” on page 2-161

“No Boundary Conditions Between Subdomains” on page 2-164
“Identify Boundary Labels” on page 2-166

“Boundary Matrix for 2-D Geometry” on page 2-168

“Specify Boundary Conditions” on page 2-174

“Solve PDEs with Constant Boundary Conditions” on page 2-181
“Solve PDEs with Nonconstant Boundary Conditions” on page 2-186
“View, Edit, and Delete Boundary Conditions” on page 2-192
“Boundary Conditions by Writing Functions” on page 2-197
“Generate Mesh” on page 2-209

“Find Mesh Elements and Nodes by Location” on page 2-219
“Assess Quality of Mesh Elements” on page 2-226

“Mesh Data as [p,e,t] Triples” on page 2-230

“Mesh Data” on page 2-233

Solve Problems Using Legacy PDEModel Objects

Solve Problems Using Legacy PDEModel Objects

Note THIS PAGE DESCRIBES THE LEGACY WORKFLOW. New features might not be
compatible with the legacy workflow. For the corresponding step in the recommended
workflow, see “Solve Problems Using PDEModel Objects” on page 2-6.

1 Put your problem in the correct form for Partial Differential Equation Toolbox solvers.
For details, see “Equations You Can Solve Using Legacy Functions” on page 1-3. If
you need to convert your problem to divergence form, see “Put Equations in
Divergence Form” on page 2-71.

2 Create a PDEModel model container. For scalar PDEs, use createpde with no
arguments.

model = createpde;

If N is the number of equations in your system, use createpde with input argument
N.

model = createpde(N);

3 Import the geometry into model. For details, see “STL File Import” on page 2-46 or
“Three Ways to Create 2-D Geometry” on page 2-8. For example:
importGeometry(model, 'geometry.stl'); % importGeometry for 3-D
geometryFromEdges (model,g); % geometryFromEdges for 2-D

4 View the geometry so that you know the labels of the faces. To see labels of a 3-D
model, you might need to rotate the model, or make it transparent, or zoom in on it.
See “STL File Import” on page 2-46. For a 2-D example, see “Identify Boundary
Labels” on page 2-166. For example:

pdegplot(model, 'FacelLabels','on') % 'FacelLabels' for 3-D
pdegplot(model, 'EdgelLabels', 'on') % 'EdgeLabels' for 2-D

5 Create the boundary conditions. For details, see “Specify Boundary Conditions” on
page 2-174. For example:

% 'Face' for 3-D
applyBoundaryCondition(model, 'Face',[2,3,5],'u',[0,0]);

% 'Edge' for 2-D
applyBoundaryCondition(model, 'Edge',[1,4]1,'g',1,'q"',eye(2));

2-3

2 Setting Up Your PDE

2-4

10

For more information on boundary conditions, see “Boundary Conditions”.
Create the PDE coefficients. For example:

f =11;2];
a=0;
c = [1;3;5];

* You can specify coefficients as numeric, character functions on page 2-74, or
functions in 2-D functional form on page 2-80 or 3-D functional form on page 2-
83. For a 2-D example, see “Solve PDE with Coefficients in Functional Form” on
page 2-85.

* For systems of PDESs, each coefficient f, ¢, a, and d has a specific format. See “f
Coefficient for Systems” on page 2-94, “c Coefficient for Systems” on page 2-122,
and “a or d Coefficient for Systems” on page 2-147.

For all information on coefficients, see “PDE Coefficients”.

For hyperbolic or parabolic equations, create an initial condition. For nonlinear
elliptic problems, create an initial guess. See “Solve PDEs with Initial Conditions” on
page 2-161.

Create the mesh. To obtain a nondefault mesh, use generateMesh name-value pairs.
For example:

generateMesh(model) ;

Call the appropriate solver. For example:

u = assempde(model,c,a,f);
* For elliptic problems whose coefficients do not depend on the solution u, use

assempde.

» For elliptic problems whose coefficients depend on the solution u, use
pdenonlin.

» For parabolic problems, use parabolic.
» For hyperbolic problems, use hyperbolic.
» For eigenvalue problems, use pdeeig.

For definitions of the problems that these solvers address, see “Equations You Can
Solve Using Legacy Functions” on page 1-3.

Examine the solution. See “Plot 3-D Solutions and Their Gradients” on page 3-295 or
pdeplot.

See Also

See Also

applyBoundaryCondition | createpde | generateMesh | geometryFromEdges |
importGeometry | pdegplot | pdeplot | pdeplot3D

2-5

2 Setting Up Your PDE

Solve Problems Using PDEModel Objects

2-6

1

Put your problem in the correct form for Partial Differential Equation Toolbox solvers.
For details, see “Equations You Can Solve Using PDE Toolbox” on page 1-6. If you
need to convert your problem to divergence form, see “Put Equations in Divergence
Form” on page 2-71.

Create a PDEModel model container. For scalar PDEs, use createpde with no
arguments.

model = createpde();

If N is the number of equations in your system, use createpde with input argument
N.

model = createpde(N);

Import or create the geometry. For details, see “STL File Import” on page 2-46 or
“Three Ways to Create 2-D Geometry” on page 2-8.

importGeometry(model, 'geometry.stl'); % importGeometry for 3-D
geometryFromEdges(model,g); % geometryFromEdges for 2-D

View the geometry so that you know the labels of the boundaries.

'FacelLabels' for 3-D
'EdgelLabels' for 2-D

pdegplot(model, 'FacelLabels', "'
pdegplot(model, 'EdgelLabels’, "'

n
n

on') %
on') %
To see labels of a 3-D model, you might need to rotate the model, or make it
transparent, or zoom in on it. See “STL File Import” on page 2-46.

Create the boundary conditions. For details, see “Specify Boundary Conditions” on
page 2-174.

% 'face' for 3-D

applyBoundaryCondition(model, 'dirichlet"', 'face',[2,3,5],'u',[0,0]);

% 'edge' for 2-D

applyBoundaryCondition(model, 'neumann', 'edge',[1,4]1,'9"',1,'q',eye(2));

For more information on boundary conditions, see “Boundary Conditions”.
Create the PDE coefficients.

[1;2];

0 .

[i;3;5];
pecifyCoefficients(model, 'm',0,'d"',0,'c',c,'a',a,'f',f);

0w 0O Y —h

See Also

10

* You can specify coefficients as numeric or as functions.

* Each coefficient m, d, ¢, a, and f, has a specific format. See “f Coefficient for
specifyCoefficients” on page 2-97, “c Coefficient for specifyCoefficients” on page
2-100, and “m, d, or a Coefficient for specifyCoefficients” on page 2-142.

For all information on coefficients, see “PDE Coefficients”.

For time-dependent equations, or optionally for nonlinear stationary equations,
create an initial condition. See “Set Initial Conditions” on page 2-154.

Create the mesh.

generateMesh(model) ;
Call the appropriate solver. For all problems except for eigenvalue problems, call
solvepde.

result
result

solvepde(model); % for stationary problems
solvepde(model, tlist); % for time-dependent problems

For eigenvalue problems, use solvepdeeig:

result = solvepdeeig(model);

Examine the solution. See “Plot 2-D Solutions and Their Gradients” on page 3-284
and “Plot 3-D Solutions and Their Gradients” on page 3-295.

See Also

applyBoundaryCondition | createpde | generateMesh | geometryFromEdges |
importGeometry | pdegplot | pdeplot | pdeplot3D

Related Examples

“Plot 3-D Solutions and Their Gradients” on page 3-295

2-7

2 Setting Up Your PDE

Three Ways to Create 2-D Geometry

2-8

There are three ways to create 2-D geometry. Two are based on CSG (Constructive Solid
Geometry) models, which combine basic shapes.

Use the PDE Modeler app to draw basic shapes (rectangles, circles, ellipses, and
polygons) and combine them with set intersection and unions to obtain the final
geometry. You can then export the geometry to your MATLAB workspace, or continue
to work in the app. For details, see “2-D Geometry Creation in PDE Modeler App” on
page 4-3.

Use the decsg function to create geometry at the command line as follows:

* Specify matrices that represent the basic shapes (rectangles, circles, ellipses, and
polygons).

* Give each shape a label.

* Specify a “set formula” that describes the intersections, unions, and set differences
of the basic shapes.

decsg allows you to describe any geometry that you can make from the basic shapes
(rectangles, circles, ellipses, and polygons). For details, see “2-D Geometry Creation at
Command Line” on page 2-10.

Specify a function that describes the geometry. The function must be in the form
described in “Parametrized Function for 2-D Geometry Creation” on page 2-17.

How to Decide on a Geometry Creation Method

This table lists the advantages and disadvantages of each method for creating geometry.
In general, choose the lowest-numbered method:

Use the PDE Modeler app if you can (simple geometry).

2 Use the decsg function for geometries that are somewhat complex but can be
described in terms of the basic shapes.
3 Use a geometry description function if you cannot use the other methods.
Method Advantages Disadvantages
PDE Modeler app Simple click-and-drag Can be tedious to specify
interface exact shapes

Three Ways to Create 2-D Geometry

Method Advantages Disadvantages
See the geometry as you Can fail for complex figures
create it
Instant feedback on No control of edge or
subdomains, connectedness |subdomain labels
Only basic shapes as
building blocks: rectangles,
circles, ellipses, and
polygons
decsg Control all basic geometry |Cannot see the geometry as

elements

you create it

No control of edge or
subdomain labels

Only basic shapes as
building blocks: rectangles,
circles, ellipses, and
polygons

Geometry function

Specify any shape

Cannot see the geometry as
you create it

Specify edge and subdomain
labels

Need to write a function

2-9

2 Setting Up Your PDE

2-D Geometry Creation at Command Line

2-10

Three Elements of Geometry

For basic information on 2-D geometry construction, see “Three Ways to Create 2-D
Geometry” on page 2-8

To describe your geometry through Constructive Solid Geometry (CSG) modeling, use
three data structures.

1 A matrix whose columns describe the basic shapes. When you export geometry from
the PDE Modeler app, this matrix has the default name gd (geometry description).
See “Create Basic Shapes” on page 2-10.

2 A matrix whose columns contain names for the basic shapes. Pad the columns with
zeros or 32 (blanks) so that every column has the same length. See “Create Names
for the Basic Shapes” on page 2-12.

3 A set of characters describing the unions, intersections, and set differences of the
basic shapes that make the geometry. See “Set Formula” on page 2-13.

Create Basic Shapes

To create basic shapes at the command line, create a matrix whose columns each
describe a basic shape. If necessary, add extra zeros to some columns so that all columns
have the same length. Write each column using the following encoding.

Circle

Row Value

1 1 (indicates a circle)

2 x-coordinate of circle center
3 y-coordinate of circle center
4 Radius (strictly positive)

2-D Geometry Creation at Command Line

Polygon

Row Value

1 2 (indicates a polygon)
2

Number of line segments n

3 through 3+n-1

x-coordinate of edge starting points

3+n through 2*n+2

y-coordinate of edge starting points

Note Your polygon cannot contain any self-intersections. To check whether your polygon
satisfies this restriction, use the csgchk function.

Rectangle

Row Value

1 3 (indicates a rectangle)

2 4 (number of line segments)

3 through 6 x-coordinate of edge starting points
7 through 10 y-coordinate of edge starting points

The encoding of a rectangle is the same as that of a polygon, except that the first row is 3

instead of 2.

Ellipse

Row

Value

4 (indicates an ellipse)

x-coordinate of ellipse center

y-coordinate of ellipse center

First semiaxis length (strictly positive)

Second semiaxis length (strictly positive)

OV~ WINIPF

Angle in radians from x axis to first semiaxis

For example, specify a matrix that has a rectangle with a circular end cap and another
circular excision. First, create a rectangle and two adjoining circles.

2-11

2 Setting Up Your PDE

2-12

rectl = [3

XN =E=
=

0
0

.5
.5
[1

- 1;

Cl =
1
-0.25
0.25];

2 =11
-1
-0.25
0.25];

Append extra zeros to the circles so they have the same number of rows as the rectangle.

C1
c2

[Cl;zeros(length(rectl) - length(Cl),1)];
[C2;zeros(length(rectl) - length(C2),1)];

Combine the shapes into one matrix.

gd = [rectl,C1,C2];

Create Names for the Basic Shapes

In order to create a formula describing the unions and intersections of basic shapes, you
need a name for each basic shape. Give the names as a matrix whose columns contain the
names of the corresponding columns in the basic shape matrix. Pad the columns with 0 or
32 if necessary so that each has the same length.

One easy way to create the names is by specifying a character array whose rows contain
the names, and then taking the transpose. Use the char function to create the array.
char pads the rows as needed so all have the same length. Continuing the example, give
names for the three shapes.

ns
ns

char('rectl','C1','C2");
ns';

2-D Geometry Creation at Command Line

Set Formula

Obtain the final geometry by writing a set of characters that describes the unions and
intersections of basic shapes. Use + for union, * for intersection, - for set difference, and
parentheses for grouping. + and * have the same grouping precedence. - has higher
grouping precedence.

Continuing the example, specify the union of the rectangle and C1, and subtract C2.

sf = '"(rectl+Cl1)-C2"';

Create Geometry and Remove Face Boundaries

After you have created the basic shapes, given them names, and specified a set formula,
create the geometry using decsg. Often, you also remove some or all of the resulting face
boundaries. Completing the example, combine the basic shapes using the set formula.

[dl,bt] = decsg(gd,sf,ns);
View the geometry with and without boundary removal.
pdegplot(dl, 'EdgeLabels"', 'on', 'FaceLabels', 'on")

xlim([-1.5,1.5])
axis equal

2-13

2 Setting Up Your PDE

Remove the face boundaries.

[d12,bt2] = csgdel(dl,bt); % removes face boundaries
figure

pdegplot(dl2, 'EdgelLabels', 'on', 'FaceLabels', 'on')
xlim([-1.5,1.5])

axis equal

2-14

2-D Geometry Creation at Command Line

) | T =t T T
[=5 Bq
0zr | F1 -
| |
0.4 E5 2
i = i E i i
15 -1 05 0 0.5 1 15

Decomposed Geometry Data Structure

A decomposed geometry matrix has the following encoding. Each column of the matrix
corresponds to one boundary segment. Any 0 entry means no encoding is necessary for
this row. So, for example, if only line segments appear in the matrix, then the matrix has 7
rows. But if there is also a circular segment, then the matrix has 10 rows. The extra three

rows of the line columns are filled with 0.

Row Circle Line Ellipse
1 1 2 4
2 Starting x coordinate |Starting x coordinate |Starting x coordinate

2-15

2 Setting Up Your PDE

Row Circle Line Ellipse

3 Ending x coordinate Ending x coordinate Ending x coordinate

4 Starting y coordinate |Starting y coordinate |Starting y coordinate

5 Ending y coordinate Ending y coordinate Ending y coordinate

6 Region label to left of |Region label to left of |Region label to left of
segment, with direction |segment, with direction |segment, with direction
induced by start and induced by start and induced by start and
end points (0 is exterior |end points (0 is exterior |end points (0 is exterior
label) label) label)

7 Region label to right of |Region label to right of |[Region label to right of
segment, with direction |segment, with direction |segment, with direction
induced by start and induced by start and induced by start and
end points (0 is exterior |end points (0 is exterior |end points (0 is exterior
label) label) label)

8 x coordinate of circle 0 x coordinate of ellipse
center center

9 y coordinate of circle 0 y coordinate of ellipse
center center

10 Radius 0 Length of first semiaxis

11 0 0 Length of second

semiaxis

12 0 0 Angle in radians

between x axis and first
semiaxis

2-16

Parametrized Function for 2-D Geometry Creation

Parametrized Function for 2-D Geometry Creation

Required Syntax

For basic information on creating a 2-D geometry, see “Three Ways to Create 2-D
Geometry” on page 2-8.

A geometry function describes the curves that bound the geometry regions. A curve is a
parametrized function (x(t),y(t)). The variable t ranges over a fixed interval. For best
results, t must be proportional to the arc length plus a constant.

You must specify at least two curves for each geometric region. For example, the
"circleg' geometry function, which is available in Partial Differential Equation Toolbox,
uses four curves to describe a circle. Curves can intersect only at the beginning or end of
parameter intervals.

Toolbox functions query your geometry function by passing in 0, 1, or 2 arguments.
Conditionalize your geometry function based on the number of input arguments to return
the data described in this table.

Number of Input Arguments |Returned Data
0 (ne = pdegeom) ne is the number of edges in the geometry.

1(d = pdegeom(bs)) bs is a vector of edge segments. Your function returns
d as a matrix with one column for each edge segment
specified in bs. The rows of d are:

Start parameter value
End parameter value

Left region label, where “left” is with respect to
the direction from the start to the end parameter
value

4 Right region label

A region label is the same as a subdomain number.
The region label of the exterior of the geometry is 0.

2-17

2 Setting Up Your PDE

2-18

Number of Input Arguments |Returned Data

2 ([x,y] = pdegeom(bs,s)) |[sisan array of arc lengths, and bs is a scalar or an
array of the same size as s that gives the edge
numbers. If bs is a scalar, then it applies to every
element in s. Your function returns x and y, which are
the x and y coordinates of the edge segments
specified in bs at the parameter value s. The x and y
arrays have the same size as s.

Relation Between Parametrization and Region Labels

The following figure shows how the direction of parameter increase relates to label
numbering. The arrows in the figure show the directions of increasing parameter values.
The black dots indicate curve beginning and end points. The red numbers indicate region
labels. The red 0 in the center of the figure indicates that the center square is a hole.

* The arrows by curves 1 and 2 show region 1 to the left and region 0 to the right.

* The arrows by curves 3 and 4 show region 0 to the left and region 1 to the right.

* The arrows by curves 5 and 6 show region 0 to the left and region 1 to the right.

* The arrows by curves 7 and 8 show region 1 to the left and region 0 to the right.

Parametrized Function for 2-D Geometry Creation

| I 3 b—l |
1

0.8r b
I T)‘-I

0e6r 7

o 4 il 0 [i 1]

0.4r b
5 =

021 b

1
0t 4 >t .
0.2 0 0.2 0.4 0.6 0.8 1 1.2

Geometry Function for a Circle

This example shows how to write a geometry function for creating a circular region.
Parametrize a circle with radius 1 centered at the origin (0,0), as follows:

x = cos(t),
y = sin(t),
0<st=2m

A geometry function must have at least two segments. To satisfy this requirement, break
up the circle into four segments.

2-19

2 Setting Up Your PDE

2-20

* O0=st=un/2

e m/2<t=snm

e nm<t=3m/2

e 3o/2=<t=<2m

Now that you have a parametrization, write the geometry function. Save this function file

as circlefunction.m on your MATLAB® path. This geometry is simple to create
because the parametrization does not change depending on the segment number.

function [x,y] = circlefunction(bs,s)
% Create a unit circle centered at (0,0) using four segments.

switch nargin

case 0
X = 4; % four edge segments
return

case 1

A = [0,pi/2,pi,3*pi/2; % start parameter values
pi/2,pi,3*pi/2,2*pi; % end parameter values
1,1,1,1; % region label to left

0,0,0,0]; % region label to right
X = A(:,bs); % return requested columns
return
case 2
X = cos(s);
y = sin(s);

end
Plot the geometry displaying the edge numbers and the face label.

pdegplot(@circlefunction, 'EdgelLabels', 'on', 'FacelLabels', 'on")
axis equal

Parametrized Function for 2-D Geometry Creation

0.8 | e ™
06f / 1
04T /f Y

0.2 f b

F1

Arc Length Calculations for a Geometry Function

This example shows how to create a cardioid geometry using four distinct techniques. The
techniques are ways to parametrize your geometry using arc length calculations. The

cardioid satisfies the equation © = 2 (1 + cos (®}),

ezpolar('2*(1+cos(Phi))")

2-21

2 Setting Up Your PDE

4
120 60
3
150 /’f TS 30
/ N\
{1 \
| \
.,x\} |
180
% | °
|
||~ ,.'"l
'-._\
N
210 N 7330
240 300
270

r=2({1+cos(d))

The following are the four ways to parametrize the cardioid as a function of the arc
length:

Use the pdearcl function with a polygonal approximation to the geometry. This
approach is general, accurate enough, and computationally fast.

* Use the integral and fzero functions to compute the arc length. This approach is more

computationally costly, but can be accurate without requiring you to choose an
arbitrary polygon.

* Use an analytic calculation of the arc length. This approach is the best when it applies,
but there are many cases where it does not apply.

2-22

Parametrized Function for 2-D Geometry Creation

* Use a parametrization that is not proportional to the arc length plus a constant. This
approach is the simplest, but can yield a distorted mesh that does not give the most
accurate solution to your PDE problem.

Polygonal Approximation

The finite element method uses a triangular mesh to approximate the solution to a PDE
numerically. You can avoid loss in accuracy by taking a sufficiently fine polygonal
approximation to the geometry. The pdearcl function maps between parametrization and
arc length in a form well suited to a geometry function. Write the following geometry
function for the cardioid.

function [x,y] = cardioidl(bs,s)
% CARDIOID1 Geometry file defining the geometry of a cardioid.

if nargin ==
x = 4; % four segments in boundary
return
end
if nargin ==
dl = [0 pi/2 pi 3*pi/2
pi/2 pi 3*pi/2 2*%pi
1 1 1 1
0 0 0 01;
x = dl(:,bs);
return
end

zeros(size(s)

y zeros(size(s)

if numel(bs) == 1

bs = bs*ones(size(
end

X

S)),
S)),
% bs might need scalar expansion
s)); % expand bs

nth = 400; % fine polygon, 100 segments per quadrant

th = linspace(0,2*pi,nth); % parametrization

r =2*%(1 + cos(th));

r.*cos(th); % Points for interpolation of arc lengths

r.*sin(th);

% Compute parameters corresponding to the arc length values in s

th = pdearcl(th, [xt;yt],s,0,2*pi); % th contains the parameters
Now compute x and y for the parameters th

= 2*¥(1 + cos(th));

(:) = r.*cos(th);

%
©
r

X

2-23

2 Setting Up Your PDE

y(:) = r.*sin(th);
end

Plot the geometry function.

pdegplot('cardioidl"', 'EdgeLabels', 'on')
axis equal

- —I_ T

2.5

o
N

_/

N

0.5

=

/

1 2 3 4

i

With 400 line segments, the geometry looks smooth.

The built-in cardg function gives a slightly different version of this technique.

2-24

Parametrized Function for 2-D Geometry Creation

Integral for Arc Length

You can write an integral for the arc length of a curve. If the parametrization is in terms
of (1} and ¥ (%), then the arc length ¥ |t} is

) = [* [fde\? (dy\? ,a
AN Jo v il I du)

For a given value 50, you can find t as the root of the equation # () = s} The fzero
function solves this type of nonlinear equation.

Write the following geometry function for the cardioid example.

function [x,y] = cardioid2(bs,s)
% CARDIOID2 Geometry file defining the geometry of a cardioid.

if nargin ==
x = 4; % four segments in boundary
return
end
if nargin ==
dl = [0 pi/2 pi 3*pi/2
pi/2 pi 3*pi/2 2*pi
1 1 1 1
0 0 0 01;
x = dl(:,bs);
return
end
X = zeros(size(s));
y = zeros(size(s));
if numel(bs) == 1 % bs might need scalar expansion
bs = bs*ones(size(s)); % expand bs
end
cbs = find(bs < 3); % upper half of cardioid
fun = @(ss)integral(@(t)sqrt(4*(1 + cos(t)).”2 + 4*sin(t).”2),0,ss);

sscale = fun(pi);

for ii = cbs(:)' % ensure a row vector
myfun = @(rr)fun(rr)-s(ii)*sscale/pi;
theta = fzero(myfun,[0,pi]);
r = 2*¥(1 + cos(theta));

2-25

2 Setting Up Your PDE

~

r*cos(theta);
r*sin(theta);

x(ii
y(ii

~

end
cbs = find(bs >= 3); % lower half of cardioid
s(cbs) = 2*pi - s(cbs)
for ii = cbs(:)'
theta = fzero(@(rr)fun(rr)-s(ii)*sscale/pi,[0,pi]);
r = 2*¥(1 + cos(theta));
x(ii) r*cos(theta);
y(ii) -r*sin(theta);

’

end
end

Plot the geometry function displaying the edge labels.

pdegplot('cardioid2"', 'EdgeLabels', 'on')
axis equal

2-26

Parametrized Function for 2-D Geometry Creation

15/ .

0.5 R E

The geometry looks identical to the polygonal approximation. This integral version takes
much longer to calculate than the polygonal version.

Analytic Arc Length

You also can find an analytic expression for the arc length as a function of the
parametrization. Then you can give the parametrization in terms of arc length. For
example, find an analytic expression for the arc length by using Symbolic Math Toolbox™.

syms t real

r 2*(1+cos(t));
X rxcos(t);

y rxsin(t);

2-27

2 Setting Up Your PDE

arcl = simplify(sqrt(diff(x)"2+diff(y)"2));
s = int(arcl,t,0,t, 'IgnoreAnalyticConstraints', true)

S =

8*sin(t/2)

In terms of the arc length s, the parameter tis t = 2*asin(s/8), where s ranges from
0 to 8, corresponding to t ranging from 0 to =. For s between 8 and 16, by symmetry of
the cardioid, t = pi + 2*asin((16-s)/8). Furthermore, you can express x and y in
terms of s by these analytic calculations.

syms s real
th = 2*asin(s/8);
r 2*%(1 + cos(th));

r expand(r)

r:

4 - s™2/16

X = r*cos(th);

x = simplify(expand(x))
x:

s~4/512 - (3*s"2)/16 + 4

y = r*sin(th);
y = simplify(expand(y))
y:

(s*(64 - s72)"(3/2))/512

Now that you have analytic expressions for x and y in terms of the arc length s, write the
geometry function.

2-28

Parametrized Function for 2-D Geometry Creation

function [x,y] = cardioid3(bs,s)
% CARDIOID3 Geometry file defining the geometry of a cardioid.

if nargin ==
x = 4; % four segments in boundary
return

end

if nargin == 1

dl = [0 4 8 12
4 8 12 16
1 1 1 1
0 0 0 0];
x = dl(:,bs);
return
end

zeros(size(s)
zeros(size(s));
f numel(bs) == 1 % bs might need scalar expansion
bs = bs*ones(size(s)); % expand bs

end

= s));
= S)'

X
y
i

cbs = find(bs < 3); % upper half of cardioid
x(cbs) = s(cbs).”4/512 - 3*s(chs).”2/16 + 4;
y(cbs) = s(cbs).*(64 - s(cbs).”2).7(3/2)/512;
cbs = find(bs >= 3); % lower half

s(cbs) = 16 - s(cbs); % take the reflection

x(cbs) = s(cbs).”4/512 - 3*s(cbs).”2/16 + 4;

y(cbs) = -s(cbs).*(64 - s(cbs).”2).7(3/2)/512; % negate y
end

Plot the geometry function displaying the edge labels.

pdegplot('cardioid3"', 'EdgeLabels', 'on')
axis equal

2-29

2 Setting Up Your PDE

15/ .

0.5 R E

This analytic geometry looks slightly smoother than the previous versions. However, the
difference is inconsequential in terms of calculations.

Geometry Not Proportional to Arc Length

You also can write a geometry function where the parameter is not proportional to the arc
length. This approach can yield a distorted mesh.

function [x,y] = cardioid4(bs,s)
% CARDIOID4 Geometry file defining the geometry of a cardioid.

if nargin ==
x = 4; % four segments in boundary

2-30

Parametrized Function for 2-D Geometry Creation

return
end
if nargin ==
dl = [0 pi/2 pi 3*pi/2
pi/2 pi 3*pi/2 2*%pi
1 1 1 1
0 0 0 01;
x = dl(:,bs);
return
end
r=2%(1+ cos(s)); % s is not proportional to arc length
X = r.*cos(s);
y = r.*sin(s);
end

Plot the geometry function displaying the edge labels.

pdegplot('cardioid4', 'EdgelLabels', 'on')
axis equal

2-31

2 Setting Up Your PDE

25 N T . .f-____l.- —J.____- T p

151/ N

0.5 32 i

The labels are not evenly spaced on the edges because the parameter is not proportional
to the arc length.

Examine the default mesh for each of the four methods of creating a geometry.

subplot(2,2,1)

model = createpde;

geometryFromEdges (model,@cardioidl);
generateMesh(model);

pdeplot(model)

title('Polygons"')

axis equal

subplot(2,2,2)

2-32

Parametrized Function for 2-D Geometry Creation

model = createpde;

geometryFromEdges (model,@cardioid2);
generateMesh(model);

pdeplot(model)

title('Integral')

axis equal

subplot(2,2,3)

model = createpde;

geometryFromEdges (model,@cardioid3);
generateMesh(model);

pdeplot(model)

title('Analytic')

axis equal

subplot(2,2,4)

model = createpde;

geometryFromEdges (model,@cardioid4);
generateMesh(model);

pdeplot(model)

title('Distorted')

axis equal

2-33

2 Setting Up Your PDE

Peolygons
2 S 2t
1 1T
1] Or
- Al
-2 27
0 2 4 0 2 4
2
1
o
-1
-2

The distorted mesh looks a bit less regular than the other meshes. It has some very
narrow triangles near the cusp of the cardioid. Nevertheless, all of the meshes appear to
be usable.

Geometry Function Example with Subdomains and a Hole

This example shows how to create a geometry file for a region with subdomains and a
hole. It uses the "Analytic Arc Length" section of the "Arc Length Calculations for a
Geometry Function" example and a variant of the circle function from "Geometry
Function for a Circle". The geometry consists of an outer cardioid that is divided into an
upper half called subdomain 1 and a lower half called subdomain 2. Also, the lower half

2-34

Parametrized Function for 2-D Geometry Creation

has a circular hole centered at (1,-1) and of radius 1/2. The following is the code of the
geometry function.

function [x,y] = cardg3(bs,s)
CARDG3 Geometry File defining the geometry of a cardioid with two
subregions and a hole.

)
“©
)

“©

if nargin == 0
X = 9; % 9 segments
return

end

if nargin == 1

% Outer cardioid
=[0 4 8 12
4 8 12 16
1 1 2 2 % Region 1 to the left in the upper half, 2 in the lower
6 0 0 0];
% Dividing line between top and bottom
di2 = [0
4
1% Region 1 to the left
2]; % Region 2 to the right
% Inner c1rcular hole
3=

dl [0 pi/2 pi 3*pi/2
pi/2 pi 3*pi/2 2*pi
0 0 0 0 % To the left is empty
2 2 2 2]; % To the right is region 2
% Combine the three edge matrices
dl = [dl,d12,d13];
x = dl(:,bs);
return
end
X = zeros(size(s));
y = zeros(size(s));
if numel(bs) == 1 % Does bs need scalar expansion?
bs = bs*ones(size(s)); % Expand bs

end

cbs = find(bs < 3); % Upper half of cardioid

x(cbs) = s(cbs).”4/512 - 3*s(cbs).”2/16 + 4;

y(cbs) = s(cbs).*(64 - s(cbs).”2).7(3/2)/512;

cbs = find(bs >= 3 & bs <= 4); % Lower half of cardioid

s(cbs) = 16 - s(cbs);
x(cbs) = s(cbs).”4/512 - 3*s(cbs).”2/16 + 4;
y(cbs) = -s(cbs).*(64 - s(cbs).”2).7(3/2)/512;

cbs = find(bs == 5); % Index of straight line

2-35

2 Setting Up Your PDE

x(cbs) s(cbs);
y(cbs) zeros(size(cbs));
cbs = find(bs > 5); % Inner circle radius 0.25 center (1,-1)

x(cbs) =1 + 0.25*cos(s(cbs));
y(cbs) = -1 + 0.25*sin(s(cbs));
end

Plot the geometry, including edge labels and subdomain labels.

pdegplot(@cardg3, 'EdgeLabels', 'on', 'FaceLabels', 'on")
axis equal

25F — —— ']
,__.f"'ff - -
2 L -
F1

15}]

1 L -

0.5 \ T
of E5

/ |

0.5 f

i

1t B7 B¢ F2 ']

E8_E9

A5} :

2t P .

250 . B — . .

0 1 2 3 4

2-36

Parametrized Function for 2-D Geometry Creation

Nested Function for Geometry with Additional Parameters

This example shows how to include additional parameters into a function for creating a 2-
D geometry.

When a 2-D geometry function requires additional parameters, you cannot use a standard
anonymous function approach because geometry functions return a varying number of
arguments. Instead, you can use global variables or nested functions. In most cases, the
recommended approach is to use nested functions.

The example solves a Poisson's equation with zero Dirichlet boundary conditions on all
boundaries. The geometry is a cardioid with an elliptic hole that has a center at (1,-1) and
variable semiaxes. To set up and solve the PDE model with this geometry, use a nested
function. Here, the parent function accepts the lengths of the semiaxes, rr and ss, as
input parameters. The reason to nest cardioidWithEllipseGeom within
cardioidwWithEllipseModel is that nested functions share the workspace of their
parent functions. Therefore, the cardioidWithEllipseGeom function can access the
values of rr and ss that you pass to cardioidWithEllipseModel.

function cardioidWithEllipseModel(rr,ss)

if (rr > 0) & (ss > 0)
model = createpde();
geometryFromEdges (model,@cardioidwWithEllipseGeom) ;
pdegplot(model, 'EdgeLabels', 'on', 'FaceLabels', 'on')
axis equal

applyBoundaryCondition(model, 'dirichlet', 'Edge',1:8,'u',0);
specifyCoefficients(model, 'm',0,'d',0,'c',1,'a"',0,'f",1);

generateMesh(model);
u = solvepde(model);
figure
pdeplot(model, 'XYData',u.NodalSolution)
axis equal
else

display('Semiaxes values must be positive numbers.')
end

function [x,y] = cardioidWithEllipseGeom(bs,s)

if nargin ==
x = 8; % eight segments in boundary

2-37

2 Setting Up Your PDE

2-38

return
end
if nargin ==
% Cardioid
dic=[06 4 8 12
4 8 12 16
1 1 1 1
e 0 0 0];
% Ellipse
dle = [0 pi/2 pi 3*pi/2
pi/2 pi 3*pi/2 2*pi
0 0 0 0
1 1 1 11;
% Combine the edge matrices
dl = [dlc,dle];
x = dl(:,bs);
return
end
X = zeros(size

(s
y zeros(size(s
if numel(bs) ==
bs = bs*ones

H
H
[
)

)
)
1 Does bs need scalar expansion?
(size(s)); % Expand bs

end

cbs = find(bs < 3); % Upper half of cardioid
x(cbs) = s(cbs).”4/512 - 3*s(cbs).”2/16 + 4;
y(cbs) = s(cbs).*(64 - s(cbs).”2).7(3/2)/512;
cbs = find(bs >= 3 & bs <= 4); % Lower half of cardioid

s(cbs) = 16 - s(cbs);
x(cbs) = s(cbs).”4/512 - 3*s(cbs).”2/16 + 4;
y(cbs) = -s(cbs).*(64 - s(cbs).”2).7(3/2)/512;

cbs = find(bs > 4); % Inner ellipse center (1,-1) axes rr and ss

x(cbs) =1 + rr*cos(s(cbs));
y(cbs) = -1 + ss*sin(s(cbs));
end
end

When calling cardioidWithEllipseModel, ensure that the semiaxes values are small
enough, so that the elliptic hole appears entirely within the outer cardioid. Otherwise, the
geometry becomes invalid.

Parametrized Function for 2-D Geometry Creation

For example, call the function for the ellipse with the major semiaxis rr = 0.5 and the
minor semiaxis ss = 0.25. This function call returns the following geometry and the

solution.

cardioidWithEllipseModel(0.5,0.25)

25F — T~ T
H\\\\

2t . -

15t -

.1 |

\

0.5 \ F1 i

oF > -

05 / A

.- |

15t -

2+t .

x\.h ____.
-25 L i -\-\---\-_‘F\—_ =T - i 1
0 1 2 3 4

2-39

2 Setting Up Your PDE

15T

0.5

-1

2-40

Geometry from polyshape

Geometry from polyshape

This example shows how to create a polygonal geometry using the MATLAB polyshape
function. Then use the triangulated representation of the geometry as an input mesh for
the geometryFromMesh function.

Create and plot a polyshape object of a square with a hole.

t = pi/12:pi/12:2%pi;
pgon = polyshape({[-0.5 -0.5 0.
{[0.5 -0.5 -0.

0.25*cos(
0.25*sin(

)},
)})

(6,00,]

0.5], t
0.5], t

pgon =
polyshape with properties:
Vertices: [29x2 double]

NumRegions: 1
NumHoles: 1

plot(pgon)
axis equal

2-41

2 Setting Up Your PDE

0.4 r

0.2r

0.4

-ﬂtﬁ i i i i i i i

Create a triangulation representation of this object.
tr = triangulation(pgon);
Create a PDE model.

model = createpde;

With the triangulation data as a mesh, use the geometryFromMesh function to create a
geometry. Plot the geometry.

tnodes = tr.Points';
telements = tr.ConnectivitylList';

2-42

Geometry from polyshape

geometryFromMesh(model, tnodes, telements);
pdegplot(model)

057
0.4 r

ol / \
8 \ ,/

Plot the mesh.

figure
pdemesh (model)

2-43

2 Setting Up Your PDE

0.5

Because the triangulation data resulted in a low-quality mesh, generate a new finer mesh
for further analysis.

generateMesh(model)

ans =
FEMesh with properties:

Nodes: [2x1259 double]

Elements: [6x579 double]
MaxElementSize: 0.0566
MinElementSize: 0.0283
MeshGradation: 1.5000

2-44

Geometry from polyshape

GeometricOrder:

Plot the mesh.

figure

pdemesh (model)

0.5

0.4

0.3

0.2

0.1

"quadratic’

0.4

0.2

0.4

0.6

2-45

2 Setting Up Your PDE

STL File Import

This example shows how to add a geometry to your PDE model by importing an STL file,
and then plot the geometry. Generally, you create the STL file by exporting from a CAD
system, such as SolidWorks®. For best results, export a fine (not coarse) STL file in
binary (not ASCII) format. After importing, view the geometry using the pdegplot
function. To see the face IDs, set the FaceLabels name-value pairto 'on'.

View the geometry examples included with Partial Differential Equation Toolbox™.

model = createpde;
importGeometry(model, 'Torus.stl');
pdegplot(model, 'FaceLabels', 'on")

80 ~
60 -
40 -
FJ|
ED -
04z
204 Y
20 4/\\
20 R A
D _ZD o — I ED
40 ED” . /_// 0
80 20

2-46

STL File Import

model = createpde;
importGeometry(model, 'Block.stl');
pdegplot(model, 'FaceLabels', 'on')

40

20~
F&

F3

100

model = createpde;
importGeometry(model, 'PlatelOx10x1l.stl"');
pdegplot(model, 'FacelLabels', 'on')

2-47

2 Setting Up Your PDE

model = createpde;
importGeometry(model, 'Tetrahedron.stl');
pdegplot(model, 'FaceLabels', 'on')

2-48

STL File Import

80

60

40

model = createpde;

F1

“mn

importGeometry(model, 'BracketWithHole.stl');

pdegplot(model, 'FaceLabels', 'on")

100

2-49

2 Setting Up Your PDE

F&

0.15

0.05

model = createpde;
importGeometry(model, 'BracketTwoHoles.stl');
pdegplot(model, 'FaceLabels', 'on")

2-50

STL File Import

200

100

To see hidden portions of the geometry, rotate the figure using Rotate 3D button

®)

or the view function. You can rotate the angle bracket to obtain the following view.

pdegplot(model, 'FacelLabels', 'on')
view([-24 -19])

2-51

2 Setting Up Your PDE

f——
100
z
F1
F6
50
L
X
0 1 y >
=50 4
-50
o 150
20 100 200

model = createpde;
importGeometry(model, 'ForearmLink.stl');
pdegplot(model, 'FacelLabels', 'on');

2-52

STL File Import

60 -

40

20

=20

40 -

50 0

100 -20

pdegplot(model, 'FacelLabels', 'on', 'FaceAlpha',0.5)

2-53

2 Setting Up Your PDE

When you import a planar STL geometry, the toolbox converts it to a 2-D geometry by
mapping it to the X-Y plane.

model = createpde;
importGeometry(model, 'PlateHolePlanar.stl');
pdegplot(model, 'EdgelLabels’', 'on')

2-54

STL File Import

18

16

14

12

106

10

2-55

2 Setting Up Your PDE

Geometry from Triangulated Mesh

2-56

3-D Geometry from a Finite Element Mesh

This example shows how to import a 3-D mesh into a PDE model. Importing a mesh
creates the corresponding geometry in the model.

The tetmesh file that ships with your software contains a 3-D mesh. Load the data into
your Workspace.

load tetmesh

Examine the node and element sizes.

size(tet)
ans = 1x2
4969 4
size(X)
ans = 1Ix2
1456 3

The data is transposed from the required form as described in geometryFromMesh.

Create data matrices of the appropriate sizes.

nodes = X';
elements = tet';

Create a PDE model and import the mesh.

model = createpde();
geometryFromMesh(model, nodes,elements);

The model contains the imported mesh.

model.Mesh

Geometry from Triangulated Mesh

ans =
FEMesh with properties:

Nodes: [3x1456 double]
Elements: [4x4969 double]
MaxElementSize: 8.2971
MinElementSize: 1.9044
MeshGradation: []
GeometricOrder: 'linear’

View the geometry and face numbers.

pdegplot(model, 'FacelLabels', 'on', 'FaceAlpha',0.5)

2-57

2 Setting Up Your PDE

2-D Multidomain Geometry
Create a 2-D multidomain geometry from a mesh.

Load information about nodes, elements, and element-to-domain correspondence into
your workspace. The file MultidomainMesh2D ships with your software.

load MultidomainMesh2D

Create a PDE model.

model = createpde;

Import the mesh into the model.
geometryFromMesh(model,nodes,elements,ElementIdToRegionId);
View the geometry and face numbers.

pdegplot(model, 'FaceLabels', 'on')

2-58

Geometry from Triangulated Mesh

08 06 04 02 0 02 04 06 08

2-59

2 Setting Up Your PDE

Geometry from alphaShape

2-60

Create a 3-D geometry using the MATLAB alphaShape function. First, create an
alphaShape object of a block with a cylindrical hole. Then import the geometry into a PDE
model from the alphaShape boundary.

Create a 2-D mesh grid.

[xg, yg]l = meshgrid(-3:0.25:3);
Xg = xg(:);
yg = yg(:);

Create a unit disk. Remove all the mesh grid points that fall inside the unit disk, and
include the unit disk points.

t = (pi/24:pi/24:2%pi)"';
X = cos(t);
y = sin(t);

circShp = alphaShape(x,y,2);
in inShape(circShp,xg,yg);
Xg = [xg(~in); cos(t)];
yg = [yg(~in); sin(t)];

Create 3-D copies of the remaining mesh grid points, with the z-coordinates ranging from
0 through 1. Combine the points into an alphaShape object.

zg = ones(numel(xg),1);
xg = repmat(xg,5,1);
yg = repmat(yg,5,1);
zg = zg*(0:.25:1);

zg = z9(:);

shp = alphaShape(xg,yg,zg);

Obtain a surface mesh of the alphaShape object.
[elements,nodes] = boundaryFacets(shp);

Put the data in the correct shape for geometryFromMesh.

nodes = nodes';
elements = elements';

Create a PDE model and import the surface mesh.

Geometry from alphaShape

model = createpde();
geometryFromMesh(model,nodes,elements);

View the geometry and face numbers.

pdegplot(model, 'FacelLabels', 'on', 'FaceAlpha',0.5)

To use the geometry in an analysis, create a volume mesh.

generateMesh(model);

2-61

2 Setting Up Your PDE

Cuboids, Cylinders, and Spheres

Create 3-D geometries formed by one or more cubic, cylindrical, and spherical cells by
using the multicuboid, multicylinder, and multisphere functions, respectively.
With these functions, you can create stacked or nested geometries. You also can create
geometries where some cells are empty; for example, hollow cylinders, cubes, or spheres.

All cells in a geometry must be of the same type: either cuboids, or cylinders, or spheres.
These functions do not combine cells of different types in one geometry.

Single Sphere

Create a geometry that consists of a single sphere and include this geometry in a PDE
model.

Use the multisphere function to create a single sphere. The resulting geometry consists
of one cell.

gm = multisphere(5)

gm =
DiscreteGeometry with properties:
NumCells: 1
NumFaces: 1
NumEdges: 0
NumVertices: 0

Create a PDE model.

model createpde

model =
PDEModel with properties:

PDESystemSize: 1
IsTimeDependent: 0
Geometry: [
EquationCoefficients: [
BoundaryConditions: [
InitialConditions: [
Mesh: [

S S —

2-62

Cuboids, Cylinders, and Spheres

SolverOptions:

[1x1 PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =

PDEModel with properties:

PDESystemSize:
IsTimeDependent:
Geometry:
EquationCoefficients:
BoundaryConditions:
InitialConditions:
Mesh:

SolverOptions:

Plot the geometry.

1
0
[1x1 DiscreteGeometry]
[]
[]
[]
[]
[1

x1 PDESolverOptions]

pdegplot(model, 'CellLabels"', 'on")

2-63

2 Setting Up Your PDE

c1

-2

Nested Cuboids of Same Height

Create a geometry that consists of three nested cuboids of the same height and include
this geometry in a PDE model.

Create the geometry by using the multicuboid function. The resulting geometry
consists of three cells.

gm = multicuboid([2 3 5],[4 6 10],3)
gm =

DiscreteGeometry with properties:

2-64

Cuboids, Cylinders, and Spheres

NumCells: 3

NumFaces: 18

NumEdges: 36
NumVertices: 24

Create a PDE model.
model = createpde

model =

PDEModel with properties:

PDESystemSize:
IsTimeDependent:
Geometry:
EquationCoefficients:
BoundaryConditions:
InitialConditions:
Mesh:

SolverOptions:

1
0
[]
[]
[]
[]
[]
[1

x1 PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =

PDEModel with properties:

PDESystemSize:
IsTimeDependent:
Geometry:
EquationCoefficients:
BoundaryConditions:
InitialConditions:
Mesh:

SolverOptions:

Plot the geometry.

1
0
[1x1 DiscreteGeometry]
[
[
[
[
[

[P S P

x1 PDESolverOptions]

pdegplot(model, 'CellLabels', 'on', 'FaceAlpha',0.5)

2-65

2 Setting Up Your PDE

2-66

Stacked Cylinders

Create a geometry that consists of three stacked cylinders and include this geometry in a
PDE model.

Create the geometry by using the multicylinder function with the ZOffset argument.
The resulting geometry consists of four cells stacked on top of each other.

gm = multicylinder(10,[1 2 3 4],'Z0ffset',[0 1 3 6])

gm =
DiscreteGeometry with properties:

Cuboids, Cylinders, and Spheres

NumCells:
NumFaces:
NumEdges:
NumVertices:

(S0, VeI~

Create a PDE model.
model = createpde

model =

PDEModel with properties:

PDESystemSize:
IsTimeDependent:
Geometry:
EquationCoefficients:
BoundaryConditions:
InitialConditions:
Mesh:

SolverOptions:

1
0
[]
[]
[]
[]
[]
[1

x1 PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =

PDEModel with properties:

PDESystemSize:
IsTimeDependent:
Geometry:
EquationCoefficients:
BoundaryConditions:
InitialConditions:
Mesh:

SolverOptions:

Plot the geometry.

1
0
[1x1 DiscreteGeometry]
[
[
[
[
[

[S P

x1 PDESolverOptions]

pdegplot(model, 'CellLabels', 'on', 'FaceAlpha',0.5)

2-67

2 Setting Up Your PDE

10

Hollow Cylinder
Create a hollow cylinder and include it as a geometry in a PDE model.

Create a hollow cylinder by using the multicylinder function with the Void argument.
The resulting geometry consists of one cell.

gm multicylinder([9 10],10, 'Void', [true, false])

gm =
DiscreteGeometry with properties:

NumCells: 1

2-68

Cuboids, Cylinders, and Spheres

NumFaces: 4
NumEdges: 4
NumVertices: 4

Create a PDE model.
model = createpde

model =

PDEModel with properties:

PDESystemSize:
IsTimeDependent:
Geometry:
EquationCoefficients:
BoundaryConditions:
InitialConditions:
Mesh:

SolverOptions:

1
0
[]
[]
[]
[]
[]
[1

x1 PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =

PDEModel with properties:

PDESystemSize:
IsTimeDependent:
Geometry:
EquationCoefficients:
BoundaryConditions:
InitialConditions:
Mesh:

SolverOptions:

Plot the geometry.

1
0
[1x1 DiscreteGeometry]
[]
[]
[]
[]
[1

x1 PDESolverOptions]

pdegplot(model, 'CellLabels', 'on', 'FaceAlpha',0.5)

2-69

2 Setting Up Your PDE

2-70

Put Equations in Divergence Form

Put Equations in Divergence Form

In this section...

“Coefficient Matching for Divergence Form” on page 2-71
“Boundary Conditions Can Affect the ¢ Coefficient” on page 2-72
“Some Equations Cannot Be Converted” on page 2-73

Coefficient Matching for Divergence Form

As explained in “Equations You Can Solve Using PDE Toolbox” on page 1-6, Partial
Differential Equation Toolbox solvers address equations of the form

-V-(cVu)+au=f

or variants that have derivatives with respect to time, or that have eigenvalues, or are
systems of equations. These equations are in divergence form, where the differential
operator begins V -. The coefficients q, ¢, and f are functions of position (x, y, z) and
possibly of the solution u.

However, you can have equations in a form with all the derivatives explicitly expanded,
such as

AT 3G

ax? axay 2 5y?

=0

In order to transform this expanded equation into toolbox format, you can try to match
the coefficients of the equation in divergence form to the expanded form. In divergence
form, if

Cc=

V- (cVu) = cruyy + (¢ + C3)Uyy + Calyy

+601+602 +
ax Ty |

ac3 dcy
ax T W)“y

2-71

2 Setting Up Your PDE

Matching coefficients in the u,, and u,, terms in — V - (¢Vu) to the equation, you get
e = -1+
ca= —(1+y%)/2

Then looking at the coefficients of u, and uy, which should be zero, you get

ac ac ac
_1 + _2 = —2x + _2
X ay ay

S0
Cy = 2xy.

X

ox T ay) T
SO
C3 =Xy

acy ac ac
3 4 4) 3

This completes the conversion of the equation to the divergence form

-V-(cVu)=0

Boundary Conditions Can Affect the c Coefficient
The c coefficient appears in the generalized Neumann condition
n - (cVu)+qu=g

So when you derive a divergence form of the c coefficient, keep in mind that this
coefficient appears elsewhere.

For example, consider the 2-D Poisson equation -u,, - uy, = f. Obviously, you can take
¢ = 1. But there are other ¢ matrices that lead to the same equation: any that have
c(2) +c(3) =0.

C1 C3|[Uux

V- (cVu)=V -

C2 C4)\Uy
=i(cu +cu)+i(cu + cauty)
ax \U1Hx 3Uy ayZX 4Uy

= Cplyy + Calyy + (C2 + C3)Uyy

2-72

See Also

So there is freedom in choosing a ¢ matrix. If you have a Neumann boundary condition
such as

n - (cVu) =2

the boundary condition depends on which version of ¢ you use. In this case, make sure
that you take a version of ¢ that is compatible with both the equation and the boundary

condition.

Some Equations Cannot Be Converted

Sometimes it is not possible to find a conversion to a divergence form such as
-V-(cVu)+au=f

For example, consider the equation

cos(x +) 9%u 4 16%u _
4 Xy~ 2q9y2

62u
ax2

+

By simple coefficient matching, you see that the coefficients c¢; and ¢, are -1 and -1/2
respectively. However, there are no ¢, and c; that satisfy the remaining equations,

Cy+ 3= —cos(4x +y)

aCcy + acy; dacy

Xy |y

ac3 , dcg 9C3 0

Xy ax
See Also

Related Examples
. “Equations You Can Solve Using PDE Toolbox” on page 1-6
. “Solve Problems Using PDEModel Objects” on page 2-6

2-73

2 Setting Up Your PDE

Specify Scalar PDE Coefficients in Character Form

Note THIS PAGE DESCRIBES THE LEGACY WORKFLOW. New features might not be
compatible with the legacy workflow. For the corresponding step in the recommended
workflow, see the recommended examples on the “PDE Coefficients” page.

Write a text expression using these conventions:

* 'X' — x-coordinate
* 'y' — y-coordinate

* 'Zz' — z-coordinate (3-D geometry)

u' — Solution of equation

* 'ux' — Derivative of u in the x-direction

* 'uy' — Derivative of u in the y-direction

* 'uz' — Derivative of u in the 2-direction (3-D geometry)
* 't' — Time (parabolic and hyperbolic equations)

¢ 'sd' — Subdomain number (not used in 3-D geometry)

For example, you could use this vector of characters to represent a coefficient:

"X +y)./(X."2 +y."2+ 1) + 3+ sin(t)./(1 + u.m4)'

Note Use .*, ./, and .” for multiplication, division, and exponentiation operations. The
text expressions operate on row vectors, so the operations must make sense for row
vectors. For 2-D geometry, the row vectors are the values at the triangle centroids in the
mesh.

You can write MATLAB functions for coefficients as well as plain text expressions. For
example, suppose your coefficient f is given by the file fcoeff.m:

function f = fcoeff(x,y,t,sd)

f = (x.*y)./(1 + x.”2 + y."2); % f on subdomain 1
f + log(l + t); % include time
(

sd == 2); % subdomain 2

r

2-74

Specify Scalar PDE Coefficients in Character Form

cos(x + y); % coefficient on subdomain 2

f2 =);
f(r) = f2(r); % f on subdomain 2
Represent this function in the parabolic solver, for example:

ul = parabolic(u0,tlist,b,p,e,t,c,a, fcoeff(x,y,t,sd)"',d)

Caution In function form, t represents triangles, and time represents time. In character
form, t represents time, and triangles do not enter into the form.

There is a simple way to write a text expression for multiple subdomains without using
'sd' or a function. Separate the formulas for the different subdomains with the ' !’
character. Generally use the same number of expressions as subdomains. However, if an
expression does not depend on the subdomain number, you can give just one expression.

For example, an expression for an input (a, ¢, f, or d) with three subdomains:

'2 + tanh(x.*y)!cosh(x)./(1 + x.”2 + y.”2)Ix.”2 + y.”2!
The coefficient c is a 2-by-2 matrix. You can give c in any of the following forms:

* Scalar or single vector of characters — The software interprets c as a diagonal matrix:
c O)
0c

* Two-element column vector or two-row text array — The software interprets c as a
diagonal matrix:

c(l) 0
0 c(2)

* Three-element column vector or three-row text array — The software interprets c as a
symmetric matrix:

c(1) c(2)

c(2) c(3)

* Four-element column vector or four-row text array — The software interprets c as a
full matrix:

c(1) c(3)
c(2) 0(4))

2-75

2 Setting Up Your PDE

2-76

For example, ¢ as a symmetric matrix with cos (xy) on the off-diagonal terms:

c = char(X.N2+y. "2,
'cos(x.*y)"
'u./ (1+x. A2+y A2))

To include subdomains separated by '! ', include the in each row. For example,

c = char(1+ X.7°2 4+ y."2Ix.72 + y."2',
'cos(x.*y)!sin(x.*y)"
'u./(1 + x.72 + vy. A2)'u *(2+ y."2))

Caution Do not use spaces when specifying coefficients in the PDE Modeler app. The
parser can misinterpret a space as a vector separator, as when a MATLAB vector uses a
space to separate elements of a vector.

For elliptic problems, when you include 'u’, 'ux"', 'uy', or 'uz', you must use the
pdenonlin solver instead of assempde. In the PDE Modeler app, select Solve >
Parameters > Use nonlinear solver.

Coefficients for Scalar PDEs in PDE Modeler App

Coefficients for Scalar PDEs in PDE Modeler App

To enter coefficients for your PDE, select PDE > PDE Specification.

-

[4| PDE Specification =NNCE X
Equation: -divic*grad(u)}+a*u=f
Type of PDE: Coefficient Value
@) Elliptic e 1.0
Parabolic 2 0.0
Hyperbalic f 10.0
Eigenmodes 1.0

—

Cancel

Enter text expressions using these conventions:

X — x-coordinate
y — y-coordinate

u — Solution of equation

ux — Derivative of u in the x-direction

uy — Derivative of u in the y-direction

t — Time (parabolic and hyperbolic equations)

sd — Subdomain number

For example, you could use this expression to represent a coefficient:

(x +y)./(x.?2 +y.”2+ 1) + 3 + sin(t)./(1 + u.”4)

For elliptic problems, when you include u, ux, or uy, you must use the nonlinear solver.
Select Solve > Parameters > Use nonlinear solver.

Note

2-77

2 Setting Up Your PDE

2-78

* Do not use quotes or unnecessary spaces in your entries. The parser can misinterpret
a space as a vector separator, as when a MATLAB vector uses a space to separate
elements of a vector.

* Use .*, ./, and .” for multiplication, division, and exponentiation operations. The text
expressions operate on row vectors, so the operations must make sense for row
vectors. The row vectors are the values at the triangle centroids in the mesh.

You can write MATLAB functions for coefficients as well as plain text expressions. For
example, suppose your coefficient f is given by the file fcoeff.m.

function f = fcoeff(x,y,t,sd)

(1 + x.”2 + y.”2); % f on subdomain 1
1+ t); % include time
); % subdomain 2

y); % coefficient on subdomain 2

% f on subdomain 2

X.*y)./
+ log(
d ==2
os(x +
f2(r);

=
f f
r (s
f2 = ¢
f(r) =

Use fcoeff(x,y,t,sd) as the f coefficient in the parabolic solver.

Coefficient Walug

c 1.0

a 0.0

f fooeffix,y t,sd)
d 1.0

The coefficient c is a 2-by-2 matrix. You can give 1-, 2-, 3-, or 4-element matrix
expressions. Separate the expressions for elements by spaces. These expressions mean:

CO)
c

c(l) 0O
0 c(2)

1-element expression:

2-element expression:

Coefficients for Scalar PDEs in PDE Modeler App

" 3-element expression: |- %)
b “e(2) e(3)

" 4-clement expression: (1) ¢(3)
c(2) c(4)

For example, c is a symmetric matrix with constant diagonal entries and cos (xy) as the
off-diagonal terms:

1.1 cos(x.*y) 5.5
Coefficient Value
= 1.1 cos(x.*y) 5.5
g 0.0
f 10.0
d 1.0

This corresponds to coefficients for the parabolic equation

1.1 cos(xy)
cos(xy) 5.5

ou _
at

Vu| =10.

2-79

2 Setting Up Your PDE

Specify 2-D Scalar Coefficients in Function Form

2-80

Note THIS PAGE DESCRIBES THE LEGACY WORKFLOW. New features might not be
compatible with the legacy workflow. For the corresponding step in the recommended
workflow, see the recommended examples on the “PDE Coefficients” page.

Coefficients as the Result of a Program

Usually, the simplest way to give coefficients as the result of a program is to use a
character expression as described in “Specify Scalar PDE Coefficients in Character Form”
on page 2-74. For the most detailed control over coefficients, though, you can write a
function form of coefficients.

A coefficient in function form for 2-D geometry has the syntax
coeff = coeffunction(p,t,u,time)
coeff represents any coefficient: c, a, f, or d.

Your program evaluates the return coeff as a row vector of the function values at the
centroids of the triangles t. For help calculating these values, see “Calculate Coefficients
in Function Form” on page 2-81.

* pand t are the node points and triangles of the mesh. For a description of these data
structures, see “Mesh Data” on page 2-233. In brief, each column of p contains the x-
and y-values of a point, and each column of t contains the indices of three points in p
and the subdomain label of that triangle.

* U is a row vector containing the solution at the points p. uis [] if the coefficients do
not depend on the solution or its derivatives.

* time is the time of the solution, a scalar. time is [] if the coefficients do not depend
on time.

Caution In function form, t represents triangles, and time represents time. In character
form, t represents time, and triangles do not enter into the form.

Specify 2-D Scalar Coefficients in Function Form

Pass the coefficient function to the solver as ' coeffunction' or as a function handle
@coeffunction. In the PDE Modeler app, pass the coefficient as coeffunction
without quotes, because the PDE Modeler app interprets all entries as characters.

If your coefficients depend on u or time, then when u or time are NaN, ensure that the
corresponding coeff consist of a vector of NaN of the correct size. This signals to solvers,
such as parabolic, to use a time-dependent or solution-dependent algorithm.

For elliptic problems, if any coefficient depends on u or its gradient, you must use the
pdenonlin solver instead of assempde. In the PDE Modeler app, select Solve >
Parameters > Use nonlinear solver.

Calculate Coefficients in Function Form
X- and Y-Values

The x- and y-values of the centroid of a triangle t are the mean values of the entries of the
points p in t. To get row vectors xpts and ypts containing the mean values:

% Triangle point indices

itl = t(1,:);
it2 = t(2,:);
it3 = t(3,:);

% Find centroids of triangles
xpts = (p(1,itl) + p(1,it2) + p(1,it3))/3;
ypts (p(2,itl) + p(2,it2) + p(2,1it3))/3;

Interpolated u

The pdeintrp function linearly interpolates the values of u at the centroids of t, based
on the values at the points p.

uintrp = pdeintrp(p,t,u); % Interpolated values at centroids

The output uintrp is a row vector with the same number of columns as t. Use uintrp
as the solution value in your coefficient calculations.

Gradient or Derivatives of u

The pdegrad function approximates the gradient of u.

[ux,uy] = pdegrad(p,t,u); % Approximate derivatives

2-81

2 Setting Up Your PDE

The outputs ux and uy are row vectors with the same number of columns as t.

Subdomains

If your coefficients depend on the subdomain label, check the subdomain number for each
triangle. Subdomains are the last (fourth) row of the triangle matrix. So the row vector of
subdomain numbers is:

subd = t(4,:);

You can see the subdomain labels by using the pdegplot function with the
SubdomainLabels name-value pair set to 'on':

pdegplot(g, 'SubdomainLabels"', 'on")

2-82

Specify 3-D PDE Coefficients in Function Form

Specify 3-D PDE Coefficients in Function Form

Note THIS PAGE DESCRIBES THE LEGACY WORKFLOW. New features might not be
compatible with the legacy workflow. For the corresponding step in the recommended
workflow, see the recommended examples on the “PDE Coefficients” page.

Usually, the simplest way to give coefficients as the result of a program is to use a
character expression. For this approach, see “Specify Scalar PDE Coefficients in
Character Form” on page 2-74. For more detailed control over coefficients, though, you
can write coefficients in function form.

A coefficient in function form for 3-D geometry uses this syntax:

coeff = myfun(location,state)

coeff represents any coefficient: ¢, a, f, or d. Partial Differential Equation Toolbox
solvers pass the location and state data to your function.

* Tlocationis a structure with these fields:

* Tlocation.x
* location.y
* location.z

The fields represent the x-, y-, and z- coordinates of points for which your function
calculates coefficient values. The location fields are row vectors.

* state is a structure with these fields:

* state.u

*+ state.ux

* state.uy

* state.uz

* state.t

The state.u field represents the current value of the solution u. The state. ux,

state.uy, and state.uz fields are estimates of the solution’s partial derivatives
(au/ax, au/ay, and du/dz) at the corresponding points of the location structure. The

2-83

2 Setting Up Your PDE

2-84

solution and gradient estimates are row vectors. The state.t field is a scalar
representing time for the parabolic and hyperbolic solvers.

The coeff output of your function is an NC-by-M matrix, where
* NCis the length of a coefficient column vector.

* f — NCis the same as the number of equations, N.

« aord—NCcanbe 1, N, N(N+1)/2, or N (see “a or d Coefficient for Systems” on
page 2-147).

* ¢ — NC can have many different values in the range 1 to 9N? (see “c Coefficient for
Systems” on page 2-122).

* Mis the length of any of the Location fields. This is also the length of the state.u
fields.

Your function must compute in a vectorized fashion. In other words, it must return the
matrix of values for every point in Location. For example, in an N = 1 problem where
the f coefficient is 1 + x2, one possible function is:

function fcoeff = ffunction(location,state)
fcoeff = 1 + location.x.”2;

To pass this coefficient to the parabolic solver, set the coefficient to @f function. For
example:

f

%

u

@ffunction;
ssume the other inputs are defined
parabolic(u@,tlist,model,c,a,f,d);

=1

If you need a constant value, use the size of Location. x as the number of columns of the
matrix. For an N = 3 problem:

function fcoeff = ffunction(location,state)

fcoeff = ones(3,length(location.x));

Solve PDE with Coefficients in Functional Form

Solve PDE with Coefficients in Functional Form

Note THIS PAGE DESCRIBES THE LEGACY WORKFLOW. New features might not be
compatible with the legacy workflow. For the corresponding step in the recommended
workflow, see the recommended examples on the “PDE Coefficients” page.

This example shows how to write PDE coefficients in character form and in functional
form for 2-D geometry.

Geometry

The geometry is a rectangle with a circular hole. Create a PDE model container, and
incorporate the geometry into the container.

model = createpde(1);

% Rectangle is code 3, 4 sides,

% followed by x-coordinates and then y-coordinates
R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]";

% Circle is code 1, center (.5,0), radius .2
Cl=1[1,.5,0,.21";

% Pad Cl with zeros to enable concatenation with Rl
Cl1 = [C1l;zeros(length(R1l)-length(Cl1),1)];

geom = [R1,C1];

% Names for the two geometric objects

ns = (char('R1','C1"))";

% Set formula

sf = 'RL - Cl';

% Create geometry

gd = decsg(geom,sf,ns);

% Include the geometry in the model
geometryFromEdges (model,gd);

% View geometry

pdegplot(model, 'EdgelLabels', 'on")
xlim([-1.1 1.1])

axis equal

2-85

2 Setting Up Your PDE

0.4 . - - ——Ep—— ; . :
0.2t e
R
0F E3 !
b o
021 —
0.4 : : : N : : :

-1 0.8 -06 -04 -02 0 0.2

PDE Coefficients

The PDE is parabolic,

.r.l’f‘}j

ot Ve (ceVu)+au=f

with the following coefficients:

+ d=5
(] a:O

2-86

Solve PDE with Coefficients in Functional Form

+ fisalinear ramp up to 10, holds at 10, then ramps back down to 0:

10¢ 0=t=0.1
u=10- 1 0L1<t<09
10=10¢ 09<t=<1

Write a function for the f coefficient. function f = framp(t)

if t <= 0.1
f = 10*t;
elseif t <= 0.9
f=1;
else
f = 10-10%*t;
end
f = 10*f;
end

Boundary Conditions

The boundary conditions on the outer boundary (segments 1 through 4) are Dirichlet,
with the value # (. %) =[x — ¥} where ¢ is time. Suppose the circular boundary
(segments 5 through 8) has a generalized Neumann condition, with 4 = 1 and

a
g=I + iy,

myufun = @(region,state)state.time*(region.x - region.y);

mygfun = @(region,state)(region.x.”2 + region.y.”2);
applyBoundaryCondition(model, 'edge',1:4, 'u',myufun, 'Vectorized', 'on');
applyBoundaryCondition(model, 'edge',5:8,'q"',1,'g"',mygfun, 'Vectorized', 'on');

The boundary conditions are the same as in “Boundary Conditions for Scalar PDE” on
page 2-197. That description uses the older function form for specifying boundary
conditions, which is no longer recommended. This description uses the recommended
object form.

Initial Conditions

The initial condition is © (- #) = 0 at ¢ t = 0.

2-87

2 Setting Up Your PDE

Mesh

Create the mesh.

generateMesh(model, 'GeometricOrder', 'linear"');

Parabolic Solution Times

Set the time steps for the parabolic solver to 50 steps from time 0 to time 1.

tlist = linspace(0,1,50);

Solution

Solve the parabolic PDE.

5;

0;

"framp(t)';

"1+ X."2 +y."2';
parabolic(u@,tlist,model,c,a,f,d);

0O+ QO
I mwnn

120 successful steps

9 failed attempts

260 function evaluations

1 partial derivatives

35 LU decompositions

259 solutions of linear systems

View an animation of the solution.

for tt = 1:size(u,2) % number of steps
pdeplot(model, 'XYData',u(:,tt), 'ZData',u(:,tt), 'ColorMap', 'jet")
axis([-11 -1/2 1/2 -1.5 1.5 -1.5 1.5]) % use fixed axis
title(['Step ' num2str(tt)])
view(-45,22)
drawnow
pause(.1)

end

2-88

Solve PDE with Coefficients in Functional Form

Step 50
1.5

-0.5

-1.2

Alternative Coefficient Syntax

Equivalently, you can write a function for the coefficient f in the syntax described in
“Specify 2-D Scalar Coefficients in Function Form” on page 2-80.

function f = framp2(p,t,u,time)

if time <= 0.1

f = 10*time;
elseif time <= 0.9
f=1;

else
f =10 - 10*time;

2-89

2 Setting Up Your PDE

end
f = 10*f;
end

Call this function by setting

f
u

@framp2;
parabolic(u@,tlist,model,c,a,f,d);

120 successful steps

9 failed attempts

260 function evaluations

1 partial derivatives

35 LU decompositions

259 solutions of linear systems

You can also write a function for the coefficient ¢, though it is more complicated than the
character formulation. function ¢ = cfunc(p,t,u,time)

% Triangle point indices

itl = t(1,:);
it2 = t(2,:);
it3 = t(3,:);

% Find centroids of triangles
xpts = (p(1,itl) + p(1,it2) + p(1,it3))/3;
ypts = (p(2,itl) + p(2,1t2) + p(2,it3))/3;

c =1+ xpts.”™2 + ypts.”2;
end

Call this function by setting

C
u

@cfunc;
parabolic(u@,tlist,model,c,a,f,d);

120 successful steps

9 failed attempts

260 function evaluations

1 partial derivatives

35 LU decompositions

259 solutions of linear systems

2-90

Coefficients for Systems of PDEs in the PDE Modeler App

Coefficients for Systems of PDEs in the PDE Modeler App

You can enter coefficients for a system with N = 2 equations in the PDE Modeler app. To
do so, open the PDE Modeler app and select Generic System.

O\ Generic System -

Generic Scalar

Generic Syzstem
».

Structural Mech., Platve Stress
Structural Mech., Plane Strain
Electrostatics

Magnetostatics

AC Power Electromagnetics
Conductive Media DC

Heat Transfer

Diffusion

Then select PDE > PDE Specification.

4| PDE Specification == GRS
Equation: -divic*grad(u)}+a*u=f
Type of PDE: Coefficient Value Value
@ Eliptic e, e12 10 0.0
(7) Parabolic c21, c22 0.0 10
() Hyperbolic alt, alz 0.0 0.0
") Eigenmodes a2, a22 0.0 0.0
f1. 2 1.0 1.0
1.0 0.0
0.0 1.0

2-91

2 Setting Up Your PDE

2-92

Enter character expressions for coefficients using the form in “Coefficients for Scalar
PDEs in PDE Modeler App” on page 2-77, with additional options for nonlinear equations.
The additional options are:

* Represent the ith component of the solution u using 'u(i) ' fori =1 or 2.

* Similarly, represent the ith components of the gradients of the solution u using
'ux(i) ' and 'uy(i) "' fori=1or?2.

Note For elliptic problems, when you include coefficients u(i), ux(i), or uy (i), you
must use the nonlinear solver. Select Solve > Parameters > Use nonlinear solver.

Do not use quotes or unnecessary spaces in your entries.

For higher-dimensional systems, do not use the PDE Modeler app. Represent your
problem coefficients at the command line.

You can enter scalars into the ¢ matrix, corresponding to these equations:
—V-(c11Vu1) = V- (c12Vup) + ajpug + apup = f1

=V (c21Vuy) = V- (c2Vup) + aziug + axup = fo

If y